PG5301 燃 气 轮 机 发 电 机 组 现状分析和修复的经济效益

陆启虹 (哈尔滨船舶锅炉涡轮机研究所)

〔提要〕 某油田电厂PG5301燃气轮机发电机组运行时间不长,由于环境条件,进气过滤问题 以及尖峰负荷运行时间过长使局部零件受损,降低了功率、效率和运行的可靠性,有可能在局部 修复后就能获得较大的经济效益。

主题词 燃气轮机电站 分析 经济效益 修理

一、PG5301 燃气轮机发电机组 原 性 能

燃气轮机为 简 单 循 环,压气机为轴流 式,共十七级,转子结构为盘鼓式与涡轮同 轴,涡轮为二级,转速:5100r/min,其基 本性能见表1。

表 1 PG5301机组原性能表

序号	名 称	单位	基本负荷	尖峰负荷	
1	大气压力	kPa	101.325		
2	大气温度	°C	15		
3	空气流量	m³/h	343795	343795	
4	压气机排气温度	°C	340		
5	压气机排气压力	kPa	1099.36		
6	压气机耗功	kW	37000~38000		
7	燃气初温	°C	900	965	
8	排气温度	°C	454	471	
9	涡轮出力	kW	约60000		
10	输出电功率	kW	21700	23000	
11	热耗率(天然气)	kJ/kWh	13455.3	13216.2	
12	热效率(天然气)	%	26.76	27.24	

二、PG5301燃气轮机原参数性能 计算

主要计算公式有:

压气机压比:

$$\pi_C = P_2 * / P_1 *$$

压气**机绝热温升:**

$$\Delta T_{ad} = T_1*[(P_2*/P_1*) - 1]$$

压气机效率:

$$\eta_C = \frac{\Delta T_{ad}}{T_2^* - T_1^*}$$

压气机绝热功:

$$L_{a,b,c} = \frac{k}{k-1}RT_1^*((P_2^*/P_1^*)^{\frac{k-1}{k}} - 1)$$

压气机实际消耗功:

$$L_C = L_{ad^{\bullet}c}/\eta_c$$

涡轮膨胀比:

$$\pi_t = P_4^*/P_3^*$$

燃气初温:

$$T_3^* = \frac{T_4^*}{\pi_*^{\frac{k-1}{k}}}$$

涡轮输出功:

$$L_{t} = \eta_{t} \frac{k-1}{k} \cdot RT_{s} * (1-\pi_{t})$$

根据以上公式,假定某些效率和损失系数计算结果列入表2。 、

衰 2 PG5301燃气轮机原参数性能计算

序号	名称	符,号	单位	尖峰负荷	基本负荷
1	实际输出电功率	Ne	kW	23000	21700
2	进气压力	Pı*	kPa	10 .816	100.816
3	进气温度	tı*	٠C	15	15
4		T1*	K	288	288
5	压气机出口温度	t 2*	•C	340	340
6		T 2 *	K	613	613
7	压气机压比	π_C *		10.90	10.90
8	压气机效率	ηc*	%	86.86	86.86
9	压气机实际消耗功	Nc	kW	37755	37755
10	涡轮出口温度	t 4 *	°C	471	454
11		T4*	K	744	727
12	燃气初温	t 3 *	°C	976	945
13		T 3 *	K	1249	1218
14	涡轮总效率	η_t *	%	88	88
15	涡轮膨胀比	π_t *	j	0.09394	0.09394
16	涡轮总输出功率	N _i '	kW	64118	60870
17	涡轮纯输出功率	N t	kW	26363	23115
18	计算输出电功率	N e '	kW	24781	21728
19	与实际功率偏差	N - Ne		0.0774	0.0013
		ž			

根据表2和表1比较,燃气初温:基本负荷偏高0.003。输出电功率:基本负荷偏高0.0013,尖峰负荷偏高0.0013,尖峰负荷偏高0.0074。所以用此计算方法计算其他工况也应与实践相符合。

三、PG5301机组现状运行测量参数计算结果与性能分析

PG5301 机组 运行测量参数在表 3 中注 则。根据测量参数进行性能计算,其结果见表 3。

各性能参数分析比较如下:

1. 压气机

压气机压比下降30%,效率下降10%。 这两项因素严重地影响着机组输出功率,也 就是在同样工况下,压气机多消耗了10~ 20%的功率,而输出电功率减少了17~35%, 这就是压气机压比和效率下降引起的严重后 果。

2. 燃气初温

由于压气机压比的降低和排气温度 T_* *的限制,燃气初温大大地低于设计值,一般情况燃气初温每提高 10° 、输出功率约增加 $2\sim4\%$ 。

3. 涡轮

由热平衡和功率平衡计算来看涡轮效率 没有明显变化。

4. 输出电功率的下降和热耗率的增加

压气机效率和压比降低,并由于T₄*限制引起T₃*的降低,导致了涡轮输出功率大幅度下降,而使输出电功率大量下降和热耗率大量增加。估计压气机效率下降10%,热耗率将增加15%,压比下降和T₃*下降也大大增加热耗率,各因素加起来热耗率可能将在25%以上。因没有天热气流量测量数据,热耗率增加的具体数值暂未计算。

四、造成输出电功率 严重下降的因素

1. 压气机压比和效率

- (1) 动、静叶片型面的损坏,主要降低效率,次要降低压比;
- (2) 动、静叶片进出口边的损坏,一般出口边损坏较进口边严重。这样前一级损坏不但影响本身,并影响以后各级的流动,严重地影响压比和效率的下降;
- (3) 动叶顶部磨损,主要是灰砂进入流道,越往后面越集中到顶部,叶片是越往后相对越薄,估计后几级比较严重,这样增加了气体二次流损失,降低了效率和压比。

表 3			PG5301 机组				运 行 日 期					
序 号	名		符		单位	1985.10.16	1984.4.22	1985.10.16	1984.5.25			
1	实际输出	电功率	N.	(实测)	kW	10000	12000	14000	16000			
2	进气压力		Pı*	(实测)	kPa	101.5	100.9	101.5	100.5			
3	进气温度		T1*	(实測)	K	288	287	288	293			
4	压气机出	口压力	P ₂	(実測)	kPa	657.1	686.5	666.9	706.1			
5	压气机出	口温度	T 2*	(实測)	K	556	567	563	589			
6	涡轮出口	温度	T.	(实測)	K	608	641	663	727			
7	压气机出	口全压	P2*		k Pa	693.5	723.8	703.4	743.0			
8	全压比		π _C *			6.832	7.172	6.930	7.391			
9	压气机效	率	ηс		%	78.54	77.35	77.35	76.33			
10	涡轮出口	压力	P ₄ *		k Pa	102.0	101.4	102.0	101.0			
11	涡轮进口	压力	P3*	j	kPa	679.6	703.2	689.3	710.3			
12	涡轮膨胀	比	π,*			0.1501	0.1430	0.1480	0,1422			
13	燃气初温		T ₃ *		K	920.0	980.1	1006.2	1112.9			
14			t ₃ *	}	°C	647	707.1	733.2	839.9			
15	压气机总	耗功率	Nc		kW	31196	32574	31987	34428			
16	涡轮总输	出功率	N.	ĺ	kW	41342	44924	45481	51117			
17	涡轮纯输	出功率	N:]	kW	10146	12350	13492	1 6 688			
18	计算输出	电功率	No'	}	kW	9841	11979	13087	16187			
19	偏	垄	Ne-	Ne'		0.0159	0.00175	0.0652	-0.1168			

2. 涡轮

从测量参数性能计算结果看,涡轮叶片 在型线方面问题不大,可能涡轮叶片进出口 边有轻微损坏,但叶片要进行表面检查,主 要是前缘和后缘边的轴向裂纹和叶型表面裂 纹以及磁力探伤。

3. 燃气初温

由于压气机压比降低,引起涡轮膨胀比的降低,在原定涡轮排气温度 T_4 *的情况下, T_3 *的降低导致了涡轮功和机组输出电功率的降低。

五、修复提高功率的初步方案

- 1. 进气系统进行改装,主要是进气过 滤严格使灰粒不能进入压气机。
- 2. 排气道出口最后一段锈蚀,重新用 钢板焊接一个换上就可以。
- 3. 燃气轮机修复方案的确定,有待于 对机组通流部分进行检查。一般检查如果各

级叶片间有孔探仪孔,可以用孔探仪进行检查。估计这台机组问题较大,最好开缸详细检查,PG5301 机应有自己检查合格标准。如没有可参考其他机组对零件检查的要求,编制适合PG5301 机组的检查标准。

4. 根据以前开缸看到后二级动叶顶部 磨损比较严重。每级动叶在60片左右,在第 七级以后叶片型线部分高度在100mm以下, 这样叶片的加工费用就不会太贵,再加一些 检费修装卸,可以在机上作动平衡,预计维修 费用也不大。如前几级压气机叶片型面高度 是200mm左右和涡轮叶片损坏严重,那加工 费用就要贵些了。

如果更换少量叶片,压比能达到 $\pi_c^* = 9$,那输出电功率能达到 19000kW 以上,热耗率就能大大降低。

5. 如果最后二级叶片损坏严重。前面 损坏轻微,经检查可以继续使用,那可以测 量一下二级的压比。如压比很少,对燃气轮 机不起什么作用,也可以拿掉二级动叶和静 叶,使其压比稍有下降而压气机耗功有较大下降。再根据压比来决定 T_3 *,调整 T_4 *,估计输出电功率能达到 16000kW,而使热耗率有明显降低。

六、修复的经济效益

PG5301 燃气轮机发电机组的燃气轮机 是陆用、长寿命的,要比航空改装机组运行 管理容易。所以修复此机组是很有意义的, 只要少量投资,在较短的时期内就能修复运 行,经济效益是很大的。

1. 发电的经济效益

假定机组修复后电功率为16000kW,假定热耗率比原来下降20%。下降后的机组热效率为21·18%,原来为26·48%。此时每度电耗气量为0·4411Nm³/kWh。每年运行3000小时,这样每年能发电4800度,其经济效益见表4。

表 4 发电4800万度的经济效益

		内部价	平价	商价	
电 价	元/kWh	0.115 0.15		0.38	
天然气价	元/Nm³	0.08	0.115	0.3375	
毎度电耗气量	Nm³/kWh		0.4411		
总耗气量	万Nm³		2117.28	i i	
天然气价值	万元	169.38	243.48	714.58	
电价值	万元	552	720	1824	
毛利 润	万元	382.63	476.52	1109.42	

这里没有计算增加运行人员的工资,如 三班增加三十个人,工资也只有6~7万元, 经济效益是很大的。

2. 降低热耗率的经济效益

假 定机组 修 复后 热 耗 率 比 现在下降 2093~4186kJ/kWh(500~1000kcal/kWh)。 取最低值2093kJ/kWh按年发电量 4800 万度 计算,其经济效益见表 5。

一般机组年运行能达到6000小时以上, 我们取得特别保守,实际经济效益可能增加 一倍以上。

表 5 降低热 耗 率 2093kJ/kWh (500kcal/ kWh) 的经济效益

名	称	单	位	内价	部	平	价	商	价
每度电耗	量户	Nm 3/1	wh	T		0.44	1 1		
天然气低:	热值	kJ/N	m³	1		36	594		
每度电降	低热耗率	kJ/k	WЬ	1		2	093		
降低总热	kJ			į	10 046	×10			
降低总耗	Nm	3			274 5	00			
天然气价		元/Nm³		0.	80	0.115		0.3	375
经济效益	经济效益 元			21 9	60	31	567	92 (643

小 结

通过对 PG5301 燃气轮机发电机运行测量参数性能计算的分析,对燃气轮机主要部件可能损坏的情况有初步了解,这台机组停运在经济上损失是很大的。

这台机组只有 燃气轮 机有问 题,减 速器、发电机以及其他附属设备都是完好的。 而燃气轮机也只有叶片有些问题和进、排气 道问题。可以采用两种修复方案:

1. 中修

中修具体性能 指 标 是: 压气机效 率达到83%左右,压比达到 $\pi_C = 9$ 左右,燃气初温下降到 T_3 * = 850℃左右,输出电功率达到16 000kW以上,热耗率 达到 15806kJ/kWh(3 800kcal/kWh)。

中修要改进进气道、更换排气道、更换少量叶片、再可能有其他零件少量更换,估计投资不会超过150万元。这时输出电功率能在16000kW长期正常运行。如天然气和电都按平价计算,运行1000小时,按高价计算运行500小时就能收回投资。

2. 大修

大修就是按原性能为目标来争取,但指标定得低一些:压气机效率达到85%,压比达到 $\pi_c^*=10$ 左右,燃气初温达到900 $^{\circ}$ C,输出电功率能达到19 000 $^{\circ}$ 20 000kW,热耗率能降到14 232kJ/kWh(3400kcal/kWh)。这样压气机动叶可能更换多些。导叶也可能

在后几级要部分更换。涡轮动叶和导叶可能要部分更换,具体情况要开缸检查后才能定案,估计投资不会超过250万元,就能在输出电功率19000kW以上正常长期运行。如都按平价计算运行1300小时,都按高价计算运行650小时就能回收投资。

一台设备都齐备运行过的机组,修复一下就能投入长期运行,这台机组燃料可以用 天然气也可以用油。现在放着,电机作调相 实在太可惜了,修复燃气轮机周期可能要一年左右,但电机还可以继续作调相用,直到燃气轮机投入运行。而投资回收周期是非常短的,也就是运行2一3个月,所以修复工作有特别重要的意义。

参 考 文 献

- [1] 柯特略尔 VI B. 燃气轮机装置的变动工况。上海科学技术出版社, 1965年
- (2) 沈炳正。燃气轮机装置。机械工业出版社,1981年

Status Analysis of a PG5301 Gas Turbine Power Generating Set and Economic Results of its Renovation

Lu Qihong

(Harbin Marine Boiler & Turbine Research Institute)

Abstract

Some parts of a PG 5301 gas turbine generating set of a power plant in an oil field have been damaged after a short operation period due to the unfavorable environmental conditions, improper intake air filtration and excessively long time running at peak load. This has resulted in a lower power output, efficiency and reliability of the generating set. Considerable economic results may be achieved through repair and renovation of the malfunctioning parts.

Key Words: gas turbine power station, analysis, economic results, repair

硅可控开关被邀

参加国际技术展览

中国技术进出口公司及香港永新公司将于1990年11月举办第二届国际专利与新技术设备 展览会。硅可控开关专利技术被邀参展。届时,将有许多国家和地区参加展览。

哈尔滨船舶锅炉涡轮机研究所贯彻改革开放,军民结合方针以来,取得了好成绩。已取得六项民品技术专利权。专利技术被邀参加国际展览在该所还属首次。

(邓景滨供稿)