į.

船用原动机调速系统仿真

李 风(大连海运学院)

蔡小燕(汕头公元感光材料公司)

〔摘要〕 本文对船用原动机调速系统进行了计算机仿真,是对"船用原动机调速系统的结构 分析"〔热能动力工程1989,4(2),15—20〕一文的后续。给出了6种系统仿真的阶跃响应特性,并且 给出了相应系统的动态性能指标,稳定性、阻尼性、快速性。

关键词 船用发动机 调速系统 模拟

一、前 言

文献〔1〕对船用原动机调速系统的结构 进行了理论分析,给出了6种系统的稳态误 差,在此基础上,本文进而对此6种不同结 构的系统进行电子计算机仿真,算出数值并 且打印绘制出它们的过渡过程曲线,从而得 到系统的动态性能指标(稳定性、阻尼性和 快速性)。结合文献〔1〕得出的系统稳态误 差,便能对用 UG 型调速器与船用原动机相 匹配而组成6种调速系统的调节品质作出全 面的分析与判断,以供运行人员和设计师在 设计新型调速系统时参考。

二、仿真说明

1. 被仿真的系统

根据文献〔1〕提供的原动 机调 速系统线 性数学模型框图1和2,将系统分别组成 6 种 结构形式的仿真系统: (1)软、硬 反 馈具 全; (2)切除硬反馈,保留软反馈; (3) 切除软反馈,保留硬反馈; (4)软 反 馈改

收稿日期: 1989-11-06

成硬反馈,保留硬反馈;(5)软反馈改成 硬反馈,切除硬反馈;(6)软、硬反馈均 切除。

将以上6种不同结构形式的系统进行对 阶跃输入信号和阶跃干扰信号的仿真。输入 信号是转速给定信号,干扰信号是原动机的 外界负荷的突变信号,系统的输出信号是原 动机的转速。

2. 仿真程序

本文采用的仿真程序是结构图法仿真程 序⁽²⁾。动态响应计算采用四阶龙格——库塔 法。面向系统数学模型框图的数字仿真的主 要优点是,无需计算系统的传递函数;能方 便地考察系统中各个环节的参数改变对系统 输出量的影响;可以获得各个环节的动态响 应,若系统中有非线性环节也能较方便地加 以处理;对各类系统(例如多输入多输出系 统、非线性系统等)均能仿真。

三、系统的仿真数据和仿真曲线

下面给出 6 种系统仿真所得的数据和曲线。

1. 软、硬反馈具全系统对阶跃输入信

号的响应曲线

(1) 当λ=0, φ₀=1时,计算机输出的是离散值及离散形曲线,连接各离散点便得出连续形式响应曲线图形(如图1所示)。由输出值及图形中可找出反映系统动态性能指标:

 $\varphi_{\rm max} = 1.705$,

N = 2°

于是根据所得的 φ_{max} 值和N值可知此系统的阻尼性尚可。

对应着最大值 φ_{max} 的时间 $t_p = 0.25 s_o$

系统的过渡过程时间t_s=1.55 s。

根据 t_p 和 t_s 的大小,可知该系统的快速 性较好。但是该系统的超调量很大(σ_p = 0.705)。

图 1 当 $\lambda = 0$, $\varphi_0 = 1$ 时软、硬反馈具 全系统的响应曲线

具全系统的响应曲线

(2) 当λ=-1, φ₀=0 时系统的响应
 曲线如图 2 所示。由图 2 中的数据和曲线可
 知:系统在甩满负荷(λ=-1)而且 φ₀=0
 时是稳定的。从打印数据中可以找到

 $\varphi_{\text{max}} = 3.308 52 \text{E-}02, N = 1,$

 $t_p = 0.15 \, s, \, t_s = 0.95 \, s.$

综合上述仿真所得的系统动态性能指标,并且参考〔1〕中给出的系统稳态误差解析表达式,就可以对此系统的品质作出判断;原型系统具有固定形式的稳态误差,系统在甩负荷时有较好的动态品质,但系统在

(1)情况下,即转速给定值φ₀由零突然变到
 1时,这时超调量很大(σ₀=0.705),不
 能满足要求。因此在升速时常对给定转数的
 突增量加以限制,以防止超速。

2. 切除硬反馈、保留软反馈

(1) 当 $\lambda = 0$, $\varphi = 1$ 时,系统动态性能 指标: $\varphi_{max} = 1.717$ 22, $N = 4, t_p = 0.15s$, $t_s = 0.85 s$, $\sigma_p = 0.717$ 22。除 N 外,响应 曲线形式类似于图 1,故省略。

(2) 当 $\lambda = -1$, $\varphi_0 = 0$ 时, $\varphi_{max} = 3.306\ 08E-02$, N = 2, $t_p = 0.15\ s$, $t_s = 0.85\ s$ 。响应曲线与图2相似,故省略。

由以上性能指标可知:这种系统与原型 系统相似,虽然在甩负荷时的动态品质较 好,但当φ₀突变时,超调量σ_p=0.717 22很 大,仍不能满足要求。

3. 切除软反馈、保留硬反馈

利用以上给出的原始数据,仿真表明系 统不稳定。若将参数α/δ取为5,其它各参数 不变,则系统稳定。

(1) $\stackrel{\text{def}}{=} \lambda = 0$, $\varphi_0 = 1$ B, $\varphi_{\text{max}} = 1.123 \, 17$, $t_p = 0.35 \, s$, N = 1, $t_s = 1.05 \, s$, $\sigma_{\text{max}} = 0.123 \, 17$.

(2) 当λ=-1, φ₀=0时, σ_p=0, N
=0, 系统的过渡过程为单调上升, t_s=
0.95 s.

该系统在两种阶跃输入信号作用下,其 品质参数已均列出。上述性能指标已能完全 说明系统的品质,为节省篇幅,不再绘出图 形。

4. 软反馈改成寝反馈、保留硬反馈

两种输入信号分别作用时的系统响应曲 线都是单调的,无超调,系统稳定。t_s为1 s 左右。

5. 软互馈改成硬反馈、切除硬反馈

系统的品质及响应曲线类似于4型系统。

6. 软、硬反馈均切除

对两种不同输入信号的系统响应曲线分

别如图3和图4所示。由此两图显然看出,这 两个系统均不稳定,它们不能正常工作。我们 在仿真时改变这两个系统的原始参数数值, 毫无效果,仍然不能稳定。这是由于控制对 象(原动机)的时间常数 T。较大,对象的 传递函数1/(Tas+1)在调节过程中可以 看成是积分环节,即1/Tas,这时若把两种 反馈都切除,则系统中存在着两个积分环节 (油动机和控制对象均为积分环节),而两 个积分环节相串联的系统是结构 不 稳 定 系 统。对于结构不稳定系统仅仅改变系统的参 数,是不能达到稳定的,欲使系统稳定,则 必需改变系统的结构才行,最简单的办法是 在执行机构的输出与输入端之间,加上一个 反馈元件。这样可以得出结论:在切除系统 中的硬反馈时,不能把此系统中的软反馈也 切除,否则系统不能稳定。

|約 3 当λ=0, φ₀=-1 时软、硬反馈
 全切除的系统响应曲线

- - 四、结 论

1. 对上述6种结构形式的系统仿真表明:显然,第6种系统是结构不稳定系统,

即切除软、硬反馈,系统不能稳定。这种系 统不能工作。第1类系统和第2类系统在工作 时应限制给定转速φ₀的突增量,否则超调过 大,引起超速保护动作。在实际工程中,可 以根据不同被控对象的要求,来选用前5种 系统。

2. 在上述仿真时,所选用的各参数值 不是唯一的,针对各类不同的被控对象,可 以选取一组较合适的参数(例如 α、δ、β、 θ_g和T_i等)值,以便获得最佳的响应特性和 调节品质。

3. 仿真与分析表明:具有软、硬反馈的调速器是适应性较强的调速器。利用此种结构的调速器与原动机相匹配,可以组成多种形式具有较好性能指标的调速系统。

仿真用的原始数据和符号

原始数据。 $T_a = 2 - 3$ s (原动机的时间常数), $T_s = 0.0248 s$ (油动机的时间常数), $T_1 = 0.01$ s, $T_2 = 0.02$ s (调速器的 时间常数), $T_i = 0.391$ s (阻尼器的 时 间 常 数 可 调), $\beta = 1.075$ (阻尼系数), $\alpha = 0.5 - 1$ (调速器的系数), δ=0.03-0.04 (离心飞块机构不均匀 系数), $\theta_{g} = 0 - 1$ (硬反馈系数), α/δ取为20。 符号说明: σ。——系统的超调量, φ_0 ——转速给定信号, λ----外界负荷(干扰)信号, φ ——系统输出(转速)信号, 9°max——系统输出最大值, N----系统的振荡次数,

1、——系统过渡过程时间(s),

*t*_p-----达到第一个极值的时间(s), *t*-----时间(s)。

参考文献

〔1〕李风.船用原动机调速系统的结构分析,热能动力 工程,1989,4(2):15-20
〔2〕涂健,控制系统的数字仿真与计算机辅助设计。华 中工学院出版社,1985

Simulation of Speed Governing Systems for Marine Prime Movers

Lj Feng

(Dalian Ocean Transportation Institute)

Caj Xjao Yan

(Gongyuan Sentitive Material Manufacturing Company in Shantou City)

Abstract

This paper dealing with the simulation of speed governing systems for marine prime movers is the continuation of a previous paper "The Structural Analysis of a Speed Governing System for a Marine Prime Mover" (JETEP, Vol.4(20), 1989, 2, pp 15-20). It presents the step response characteristics of six systems being simulated and also the corresponding dynamic performance criteria, such as stabiiity, damping criterion and fast response.

Key words: marine engine, speed governing system, simulation

(上接第27页)

Dnal Microcomputer-based Boiler-Turbine Coordinated

Control System for a 200MW Generating Set

Xu Jjyu, Su Rongpej, Yu Daren

(Harbin Institute of Technology) Yang Huanyj (Harbin Steam Turbine Works) Abstract

This paper presents the design version and control unit of a microcomputerbased coordinated control system for a home-made 200MW steam turbine and 670 t/h boiler. A detailed description is given of its working principle, simulation, hardware configuration and measures aimed at achieving reliability.

Key Words: coordinated control, microcomputer-based control, boiler, steam turbine, simulation, reliability