大功率汽轮机末级动叶根部叶栅 的最优化设计

茅声闿 李 群 王松珺 王俊宏

(哈尔滨汽轮机厂)

〔摘要〕 本文提出了大功率汽轮机末级动叶根部叶栅的最优化设计的方法,并给出设计实例。 最优设计所得的叶栅损失系数比原有叶栅的损失系数有明显下降。

关键词 大功率汽轮机 叶栅 最佳设计

前 言 1

大功率汽轮机末级动叶的设计是设计过 程中最困难、最复杂的问题之一。它集中了 气动热力学、强度、振动、结构、工艺诸因 素间的矛盾。从气动热力学角度看,希望能 得到效率高的叶栅,但要受到上述诸因素的 影响。在设计长叶片的根部叶栅时,这些矛 盾就显得更为尖锐。根部叶栅型线承受了整 个长叶片的离心力,为了确保强度,对叶型 面积有一定要求: 根部叶型的轴向宽度决定 了根部的蒸汽弯曲应力,根部叶型轴向宽度 和叶型的拱度还大致决定了叶片的频率,因 此对宽度也有严格的要求; 叶栅的稠度由于 受顶部叶栅稠度的影响, 变化范围不大, 且 叶栅很稠。设计这样的型线叶栅,本身就是 不易的,它的优化设计当然就更困难。

平面叶栅优化理论虽然在国 外 开 发 较 早〔1,2〕,但它们都较为简单,只考虑单个 型面上速度分布的优化,也不能顾及叶厚分 布(面积)的要求,因此实际使用时受到限 制。比上述方法更为完密的理论是由刘高联 教授提出并完成的。它保持了叶栅流动的原 貌,采用了(叶栅)+(无粘绕流)+(附 面层)的物理模型(3)。

上述各种叶栅优化理论都是关于亚音速 平面叶栅的。而末级长叶片根部叶栅的绕流 大多是近音速的。出口马赫数Mw2为0.95~ 1.10。只要保证在叶栅通道中不产生激波, 这种叶栅优化的目标函数和亚音谏叶栅是相 同的。那么对这样一种近音速叶栅的优化就 和亚音速叶栅的优化是一样的。

我们采用了文献[3,4,5],提出的理论, 确定最优速度分布,用中心流线法反命题程 序〔9-10〕 成型叶栅。在成型时,用调整中心 流线的形状 $y_m = y_m(x)$ 和中心流线上的速 $g_{\lambda_n} = \lambda_n(x)$,得到满足叶栅环量要求的具 有最优速度分布的型线叶栅。这样得到的优 化叶栅,并不一定满足对叶型几何特性的要 求(如面积F, 叶型惯 性 矩 等等), 再分 别调整y_m和λ_m的分布,可以得到环量满足要 求速度分布 为最优,且叶型面积和叶型刚 度都符合要求的最优化叶栅。

收稿日期 1990-08-03

本文联系人 茅声阎 男 54 高级工程师 哈尔滨 150040 ?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

我们在给定进气角 $\beta_1 = 42^\circ$.出气角 $\beta_2 =$ 31.4°, 叶栅稠度 $\sigma = \frac{l}{B} = 0.294$ 58, 出口 马赫数 $M_{w2} = 1.085$ 的条件下,用上述方法 求取最优化叶栅,视约束条件:叶型 面积 F, 叶型 惯 性 矩 J 的不同,求得一组优化 叶栅。它们的叶栅 损失 系 数 为 3.1% 至 3.6%。原始叶栅的损失系数为4.7%。经济 效益明显可见。

2 目标函数及约束

2.1 根部叶栅最优化设计

设计大功率汽轮机末级动叶时,子午面 流场计算已经完成,动叶设计的气动热力参 数(叶栅进出气角 β_1 和 β_2 ,叶栅进出口马赫 数 M_{w1} 和 M_{w2})已经确定。此外,由热力、 强度、结构等诸方面考虑,也确定了末级动 叶的根径 D_o ,叶高1、叶片根部截面处的轴 向宽度 B,以及叶片各截面面积沿叶高大致 的变 化 F(1)。叶片只数也要在综合考虑单 只叶片上的蒸汽弯应力、整圈叶 片 的 离 心 力、并兼顾叶根和叶顶叶处叶栅的相对节距 $\overline{t_R}$ 和 $\overline{t_{00}}$,使 $\overline{t_{00}} \leqslant 1.0$ 而 $\overline{t_R} \approx 0.3$,在此条 件下确定叶片只数 z。这样,根部叶栅的稠 度 $\sigma_{R} = \frac{t_R}{B_R}$ 就确定了。以上就是长叶片根

部叶栅最优化设计的已知条件。我们将长叶 片根部叶栅最优化问题具体表述如下:

给定: 叶栅的气流进出气角β₁、β₂、叶 栅的相对稠 度 σ = t/B、叶栅的气流出口马 赫数M_{w2}。

要求: 在满足如下约束的条件下,求出 使叶栅损失系数 5 为最小的最佳叶型型面速 度分布并得到相应的最优化叶栅。这些约束 为: 叶型面积F≥F 要求;叶型截面的惯性矩 J≥J 要求; 背弧型面的速度 分 布 M_{s,m^ax} ≤ 2^M964-2^M8² China Academic Journal Electronic Pu

2.2 最优化设计的目标函数

如上所述,我们的目的是要在上述条件 下得到叶型损失为最小的叶栅。按文献〔3, 11〕的推荐,叶栅损失系数ζ的计算公式为:

$$\zeta = 1 - \eta \simeq \frac{2\sigma}{\cos\alpha_2} \{ (\theta_P + \theta_2)_k + 0.05\delta_k \}$$
(1)

图 1 叶栅图

由公式(1)可知,叶栅损失 系 数 ζ 是 内、背弧附面层冲量损失厚 度 θ 的 单 调 函 数 用业欲 据 ξ > min 法 必 θ ξ a > min

,M. 3. (M. 3. 为出口马赫数) 1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

第2期(32)

我们假设叶型表面上都是紊流附面层,则根 据Buri的推荐,紊流附面层的冲量损失厚度 θ的计算公式为^[12]:

$$\theta_i^{5\%4} = CRe^{-\frac{1}{4}}W_i^{-4} \int_0^s W_i^4 ds \qquad (2)$$
$$(i = s, p)$$

式中:

C→ 常数 C=0.016 Re→ 雷诺数

W;----气流速度

简化了的叶栅优化问题是对背弧速度分 布的优化。此时,求 $\zeta \Rightarrow \min$ 的问题就归结 为求 $\theta_s \Rightarrow \min$ 的问题,而求 $\theta_s \Rightarrow \min$ 的问题 又可化为求泛函

$$J(W_s) = C \int_0^{Sa} W_s^4(s) ds \tag{3}$$

式中:

W_s(s)——背弧型面速度分布

的极小值问题。所求得的W_s(s)必须满足对 它的背弧环量要求,即:

$$\int_{0}^{Sa} W_{s}(s) ds = \Phi s \tag{4}$$

式中:

Φ。——背弧速度环量

在等式约束(4)下求泛函 J(W_s)的极 小值问题,这是个等周问题,可由拉格朗日 微分方程求得:

$$\frac{\partial}{\partial W_s} [w_s^4(s) - \lambda w_s(s)] - \frac{d}{dx} \frac{\partial}{\partial w_s'} [w_s^4(s) - \lambda w_s(s)] = 0$$
(5)

$$w_s(s) = \sqrt[3]{\frac{\lambda}{4}} = \lambda_1 \tag{6}$$

由式(7)可得结论,在满足等周 约 束 (4)的条件下,损失为最小的背 弧 速度分 布w.(s)应当为常数,其值等于\$s/sa。这是 我们对根部叶栅的优化没有使用上述简 化了的最优化方法——叶型背弧速度分布的 优化,而是采用了内、背弧速度分布w_s(s) 和w_p(s)都优化的方法。此时,等周条件不 再是(4)式而是y向的动量方程所给出的积 分。

由动量定理得:

$$\int_{0}^{1} [w_{s}^{2}(s) - w_{p}^{2}(s)] ds$$
$$= \frac{2}{\sigma} (tg\alpha_{1} - tg\alpha_{2})$$
(8)

除此等周约束外,还有多种不等式约 束。关于这样一种物理模型在文献[3]中已 做了详细论述,在文献[4,5]中,根据这一理 论,给出了叶栅环量不同的情况下最优速度 分布的多种信息。归结起来有两点:

(1) 无论是背弧速度分布w。(s)或内弧
 速度分布 w_p(s),它们的分布越均 匀 越好
 (公式(7) 证明,在等周 约 束(4)的条件
 下,w_s(s)等于常数为最佳)。

(2) 在满足叶栅环量的条件下, 内 背 弧速度分布越靠近横座标越好。

对于这两条,我们曾做过数值试验。有 五种速度分布,在相同的条件下计算这五种 速度分布的附面层冲量损失厚度特,别是流 道出口的附面层冲量损失厚度,得到的结果 见图2、表1。

图 2 不同的速度分布所形成的Q分布

?199年之价极边重要的结论 Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表 1

不同速度分布下终点的附面层冲量损失厚度

速度分布编号i	1	2	3	4	5
终点处附面层冲量 损失厚度 θ_k	0.1732×10^{-3}	0.2212×10^{-4}	0.110 4×10 ⁻³	0.284 1×10 ⁻³	0.216 3×10
$\frac{\theta_k, i}{\theta_k, i=2}$	7.83	1.0	5.0	12.84	9.78

由表1可知, i=2 向速度分布,虽然 在流道内部各点上附面层冲量损失厚度比其 他方案都厚,但是出口处的厚度却为最小。 而损失是以出口处的冲量损失厚 度 来 计 算 的。因此,形 如i=2的 速度分布为最好。 i=2的速度分布很均匀, $\omega=150$, 是五种 速度分布中最靠近横轴,也是分布最均匀的 一种速度分布。

2.3 根部叶栅最优化的约束

除(8) 式所代表的对叶栅作功量的要 求外,由叶片的强度和振动提出如下几种约 束。

2.3.1 叶型面积F

为保证叶片根部截面能承受整个叶片工 作部分的离心力,要求根部截面大于等于某 给定值F要求。

2.3.2 叶型截面的惯性矩」

叶片的自振频率与叶型截面的惯性矩有 关。当确定需要把该叶片设计成刚性叶片。 或柔性叶片,或半刚性叶片时,对该叶片的 轴向宽度B 和根部截面的惯性矩就有一个要 求,希望被设计的叶栅型线的惯性矩大于等 于某个值 J要求。J 和叶型的拱度有关。因 此要调整拱度大小。

2.3.3 背弧面上流速极限的约束

要求背弧上的最高马赫数M。sumar不大于 叶栅出口马赫数 Mu2。提出 这一要求 的 原 因有二:

① 长叶片根部叶栅的出口速度往往大 于当地音速, $M_{u2} > 1$ 。此时, 如果背弧上 有速度降(指在超音速区有速度降), 就必

公式(1)和附面层计算公式(2)都不能使 用,破坏了我们最优化的基础。

② 不管有无激波,在靠近出气边处, 背弧上的速度降往往引起较显著的损失[13]。

这个约束似乎要求苛刻了一些, 但还是 可以办到的。

3 长叶片振动叶栅最优化的实施

3.1 用中心流线法反命题成型 叶栅 时。除 给 定 满 足 叶栅环量要求的参数外 (即叶栅 的进、出口气流角 β_1 、 β_2 , 稠度 σ 和出口马 赫数 M_{w2}),还要求给定中心流线方程 y_{m} = $y_m(x)$ 和中心流线上的速度分布 $\lambda_m = \lambda_m(x)$. $(x \in [0, 1])$ 。因为用 y_m 和 λ_m 两个条件较 为容易地控制内弧和 背 弧 上 的 速 度 分 布 $w_{\nu}(x)$ 、 $w_{s}(x)$, 使它们符合最优速度 分 布 的要求, 由y_m也比较容易地控制叶型拱度, 从而控制叶型截面的惯性矩,因此用中心流 线法反命题程序比较合适。中心流线上的速 度分布可取:

 $\lambda_m = ax^n + b \qquad x \in [0, 1]$ (9)式中:

> a, b---常数, 可由进出口边界条件 求得。

当x = 0时, $\lambda_m = \lambda_1 = b$,

当x = 1时, $\lambda_m = \lambda_2 = a + b$

y...可取双组线,其出口处的斜 率 为 出 气角±2°,进口斜率要比进口角小2°左右

只要 $\lambda_m(x)$ 和 $y_m(x)$ 取得合理, 就能较 容易地得到接近最优速度 分 布 的 w.(x) 和 2然竞生漱波。hi这就使贴栅损失系数自的计算。Puble(系)ger理论上最优速度为常数,两诸所包vw.enki.net 容的面积应满足提出的环量要求的两条平行 于水平轴的直线。但是满足这一要求的现实 的叶栅型线是得不到的。现实的型线叶栅, 内弧速度分布 $w_p(x)$, 在 $x \rightarrow 1.0$ 时可以做到 有较大的升速梯度, 但是背弧速度分布 $w_s(x)$, 就只能在 $x = 0.6 \sim 0.7$ 时 有较大的

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

(e)优化方案,13K速度分布 升速梯度。如图 4 (b,c,d,e) 的速度分布就 是现实上的最佳速度分布。

在以不同的λ_m和y_n组成的几十种方案中 成型叶栅,在满足约束的条件下进行搜索得 到满足不同约束的最优叶栅。

3.2 最优设计约束的满足

用中心流线法成型叶型时,叶棚的β₁、 β₂、σ、M_{w2} 是作为给定条件得到满足的。 再按不同的λ_m和y_m成型,其内背速度分布符 合最优速度分布要求的叶型具有不同的面积 和惯性矩。符合给定的面积和惯性矩要求的 又符合最优速度分布要求的叶栅是通过搜索 得到的。

4 设计实例

某长叶片,根据子午面流场计算结果得 到其根部叶栅的气动热力参数为:进气角 $\beta_1 = 42^\circ$,出气角 $\beta_2 = 31.35^\circ$,叶栅出口马 赫数 $M_{w2} = 1.085$ 。

根部叶栅的结构参数:叶栅 轴 向 宽 度 B,由根截面处的蒸汽弯应力 和对叶片的频 率要求决定;根截面叶栅的节距 t,由统筹 考虑根截面的相对节距 $\overline{t}_{R} = t_{R}/b_{R}$ 和 顶 截 面的相对节距 $\overline{t}_{\Omega} = t_{\Omega}/b_{\Omega}$ (希 望 $\overline{t}_{\Omega} \leq 1$ 、 $\overline{t}_{R} = 0.3$)这两个条件决定。在此,我们 定 叶栅稠度 $\sigma_{R} = t_{R}/B_{R} = 0.29458$ 。

我们把对叶型的面积和惯性矩的要求看 作是可变的,目的是要展示一下这两个约束 对叶型几何形状的影响。 用上述方法我们得到一组优化叶栅,其 几何参数列于表2。

由表3可知优化级的叶栅损失系数低于 原方案和改型方案的损失系数。

表 2 各方案叶型几何参数

方	案	面积下	惯性	生矩	重	心
			Jmax	J _{max}	XG	УG
改型	方案	3.6127	0.650 0	9.187 5	0.001565	0.020 88
优化方案	17A	3.068	0.541 4	7.7967	0.041 68	0.020 88
	12 <i>C</i>	3.290 0	0.607 2	8.568 8	0.010 09	0.054 96
	27 A	2.9431	0.622 0	6.988 8	0.134 42	0.149 03
	13K	2.855 0	0.508 4	7.336 2	0.015 08	0.022 49

表 3 各方案型线叶栅的损失系数

十栅方案	原 方		at mil and the	优化方案				
		茶	改型万莱	17 <i>A</i>	12C	27 A	13K	
損失系数 5 (%)	4	1.70)	4.13	3.02	3.2	3.1	2.98

参考文献

- Shuang Huo.Blade optimization based on boundary layer concepts.NATO-TG-164, 1972.12
- 2 Papailion K D.Boundary layer optimization for the design of highturning axial-flow-compressor blade. Trans.ASME.J.Engng.for Power,1971, 93(1)
- 3 刘高联·平面叶栅气动设计的最优化理论(一)、 (二)·力学学报,1980(4)
- 4 刘高联,王甲升,叶轮机械气动力学基础,机械工业 出版社,1980.7
- 5 吴宝仁,刘高联.叶轮机叶片气动优化理论的进展. 力学进展,1984,14(2)
- 6 Венеликтов В Д, и др. Исследование трансзвуковых турбинных решеток и возмозности их оптимизации численным методом. Теплоэнергетика, 1981(4)

-

- 7 建增锦,张天松,跨音速叶栅的造型、气动计算优化初步(一)。中国工程热物理学会会议资料, 1981.5
- 8 Мамаев Б И.и др. Построение решеток

对叶型儿何形状的影响。 ?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

• 78 •

1

Энергомашиностроение, 1973(1)

- 9 蔡睿贤,平面叶栅中心流线法解析解。机械工 程学报,1978.14(1)
- 10 Cai R.A summary of development of the meanstream-line method in China. Trans.ASME. J. of Engng.for Gas Turbine and Power, 1984, 106(2)
- 11 Степанов Г Ю. Гидродинамика решеток турбомашин. ГИЗД физико-математической литературы, москва: 1962
- 12 Schlichting H.Boundary layer theory. McGraw-Hill, 1960,
- 13 三菱大容量火力发电设备技术资料,三菱重工业株式会社,1984。12

Optimal Design of the Last Stage Rotor Blade Root

Cascade for Large-output Steam Turbines

Mao Shengkai, Li Qun, Wang Songjun, Wang Junhong

(Harbin Turbine Works)

Abstract

This paper presents the optimal design method of the last stage rotor blade root cascade for large-output steam turbines with actual design examples being given. The cascade loss factor of the optimally designed cascades is significantly lower than that of the original cascades.

Key words: large-output steam lurbine, cascade optimization design

欢迎订阅1991年《热能动力工程》

本刊是学术性与技术性相结合的综合性刊物。国内外公开发行,具有发行范围广,幅盖面大的特点。

本刊主要报导; 汽轮机、燃气轮机、锅炉、传动装置及热能动力工程领域中的新成 果、新技术。可供从事热力工程的技术人员、大专院校师生, 科研人员等参考。

本刊为双月刊,全年订价9.00元 (含邮费)。邮发代号 14—158, 如漏订请直接与编辑部联系补订。

编辑部现有少量的1986~1990年的过刊,如需要者请直接与编辑部联系订购。

----编辑部----

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net