文丘利管内外流场的数值计算及实验研究

蔡继勇 陈听宽 马金凤 (西安交通大学)

[摘要] 通过对文丘利管内外流场的数值计算,从理论上分析了文丘利管本身结构参数(收缩比 U,收 缩角 θ₁,扩张角 θ₂) 对其内部流场以及其本身对风道流场的影响,实验验证了影响性能的关键因素。计算结果 和冷态模化实验结果吻合良好。

关键词 文氏管 数值计算 Simple算法 实验研究 中图法分类号 T H814.51

0 前言

文丘利管流量测量装置是用来测量锅炉 燃烧空气量的重要装置之一^[12]。其本身结构 的优化程度对于测量的精确性有极其重要的 影响 应用于电站的风量测量装置,应满足对 现场的条件要求少,有广泛的适用性、测量准 确的条件。例如,对测量装置前压的直管段长 度要求不严格,由测量装置本身对风道所造 成的压力损失低,对风道流场影响较小

文献 〔1〕中,作者从文丘利管本身结构 进行了优化研究,提出了文丘利管测量装置 的优化结构的关键参数为: U= 0.6

图 1 文丘利管结构 1. 收缩段 2 喉部 3. 扩张段

1996- 06- 05 修改日期

收稿日期

 $\theta_1 = 20^{\circ}, \theta_2 = 5^{\circ}, 本文用数值计算的方法来$ 分析文献 <math>[1]中所提出的优化理论,并用冷态模化实验来进一步验证数值计算的结果。

程

1 流场计算

本章旨在应用 *k* - X二方程紊流模 型^[3~7]对文丘利管内外流场进行数值计算, 分析圆形风道内部及文丘利管内部速度场 压力场的变化规律。从理论上研究当文丘利 管放入风道中对风道内部流体流动的影响, 以及对测量结果的影响。

图 2 文丘利管在风道中的位置 1.圆形风道 2.文丘利管

本文联系人 蔡继勇 男 1971年生 710049 西安交通大学 动力工程系 博士研究生 ?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.

1997 - 07 - 31

采用 Simple算法求解^[3],进口速度给 定,进口截面上 k的值可取来流平均动能的 一个百分数 0. 5% ~ 1. 5%。耗散率 X可按 _ t= $c dK^2 / X$ 计算,其中 _ t按 $duL / _ t$ = 100~ 1000来确定 c等于 0. 09,出口条件按局部单 向化处理;中心线是对称线,其上所有变量的 法向导数为零;管内固体壁面上 $U_w = 0, V_w$ = 0,扩散系统 Γ 为零;管外壁面采用壁面函 数法^[3]。计算结果见图 3 4 5 6 7 8

- 2 实验研究
- 2.1 实验系统

实验系统图参见图 9

1. 测量装置输出压差部分 2. 测量风速部分
3. 实验用风机 4. 圆锥型文丘里管
5. 整流装置 6. 测量文丘里管前后的压力损失部分
2. 2 实验内容

图 9

作者根据理论研究出的优化文丘利管结 构参数制作了五种模型,每种模型的结构参 数见表 1圆形风道直径为 0.6 m,风道内风 速 0~ 25 m /s

表	1
~~~	

	U	$\theta_1$	$\theta_2$	$d_1$ , mm	<i>d</i> ₂ , mm	<i>l</i> ₁ , mm	<i>l</i> e, mm	<i>l</i> ₂ , mm
А	0.6	$20^{\circ}$	5°	40	18	62	18	251
В	0.6	$21^{\circ}$	6°	40	18	59	18	209
С	0.6	$22^{\circ}$	7. 5°	40	18	56	18	167
D	0. 55	$20^{\circ}$	5°	40	16	68	16	274
Е	0. 65	$20^{\circ}$	5°	40	20	57	20	229

## 2.3 实验结果

首先通过实验研究可发现理论上优化设计的文丘利管结构参数条件下的模型 A获得的压差最高,较别的几组所得的数据更具有稳定性,灵敏度更高。其次五组的实验数据发现,压力损失不大,最大时达到 19.6Pa;实验结果见图,10.11 12,13.



验结果见图 10 11 12 13 /1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.



3 讨 论

通过实验研究和数值计算可发现如下问 题:

 3.1 文丘利管本身结构的优劣程度,关键 在于其扩张段、收缩段设计的优劣程度,而其 关键因素又在于收缩比 U收缩角θ、扩张角 θ₂的优劣程度。

 3.2 文丘利管的收缩段在于加速、降压,使 喉部具有低于入口的静压值,而扩张段目的 是减速、扩压,使流体能尽快在离开出口时恢 复到原来入口的条件,减少动能损失。 Uθ, θ2的大小直接关系到上述结果的产生。

3.3 实验研究证明了 A型为最优结构,理 论设计和数值计算结果吻合良好,从图 3 4 5中可以看到 A型模型扩张段出口时流体已 恢复到入口时状态,而 B C型并未使出口流 体压力恢复到入口状态。

3.4 从数值计算中发现,ABC型文丘利 收缩段性能良好,流体达到喉部时压力可降 到最低点,使从喉部取压时很稳定。

3.5 从数值计算压力中心线分布图中同样 可发现。A型在收缩段时,压力在喉部时达到 最低点,而在扩张段压力又恢复到入口时的 静压值,尽管 B C型也达到,但其出口处压 力却不能恢复到入口时值,加大了动能损失, D E尽管出口段达到了入口时值,而在喉部 不能达到最低点。

3.6 从文丘利管外部流场的计算图中可以 看到,ADE型对风道的影响较小,即流体 从文丘利出来之后很快和风道中流体相渗, 对其下游影响较小,而BC则影响较大。

4 结 论

通过数值计算发现其结果和实验研究符 合良好。证明了对文丘利管结构优化结果 U= 0.60 $\theta_1$  = 20、 $\theta_2$  = 5[°] 是合理的,可作 为设计文丘利管的最优参数。

通过实验研究说明了 A型文丘利管发 生的压差为最大,压力损失小,测量数据稳 定,灵敏度高,对风道的影响最小。

## 参考文献

- 蔡继勇.复式文丘利管的优化设计.东北电力学院硕 士论文,1995年
- 2 马金凤.应用文丘利管进行大风量测量的研究.东北 电力学院硕士论文,1996年
- 3 陶文铨编著.数值传热学.西安交通大学出版社,1988 年
- 4 费祥麟主编.高等流体力学.西安交通大学出版社, 1988年
- 5 王启杰编著.对流传热传质分析.西安交通大学出版 社,1991年
- 6 (美)S.V.帕坦卡著.传热和流体流动的数值方法.安徽科学技术出版社,1980年
- 7 陶文铨编著,陈在康主审.计算流体力学与传热学.中 国建筑工业出版社,1991年 (复编)

7 71994-2018 Chills Academic Fourial Electronic Publishing House. All rights reserved. http://www.

and pre-separation collectors on the role and performance of recirculation tubes. Key words corner-tube boiler, recirculation tube, experimental study

文丘利管内外流场的数值计算及实验研究= Numerical Calculation and Experimental Study of Venturi Inner and Outer Tube Flow Fields [刊,中]/Cai Jiyong, Chen Tingkuan, et al (Xi án Jaotong University)// Journal of Engineering for Thermal Energy & Power, 1998, 13 (2). -96~99

By way of a numerical calculation of Venturi inner and outer tube flow fields this paper makes a theoretical analysis of the effect of structural parameters of the Venturi tube on its inner flow field and air duct flow field. In addition, through tests key factors influencing the performance have been identified and verified. The calculation results agree well with the cold-state simulation test results. Key words numerical calculation, simple algorithm, experimental study

多台汽水两用锅炉并联运行动态特性分析及数理模型研究 = An Analysis of the Dynamic Characteristics and a Study of the Mathematical Model for Three Dual-Purpose Steam-Water Boilers in Parallel Operation [刊,中]/Wang Zhaojun, Wang Wenyu, Dong Shan (Harbin University of Architectural Engineering)// Journal of Engineering for Thermal Energy & Power. -1998, 13(2). - 100~ 103

Based on an in-depth analysis of the dynamic characteristics of three dual-purpose steam-water boilers in parallel operation the authors have set up for them a dynamic mathematical model. An exploratory study was conducted of the method for solving the model. The simulation computation results are found to be in good agreement with the test results, which attests to the correctness of the established model. The related research results can be helpful for the further popularization of dual-purpose steam-water boilers. Key words dual-purpose steam-water boiler, water level fluctuation, pressure change rate

带有小螺旋角的内外螺旋翅片管高压加热器的工业试验 = The Industrial Test of an Internal and External Spiral-Finned Tube High-Pressure Heater with a Small Spiral Angle [刊,中]/ Liang Ping, Zhu Dongshang, et al (Southeastern University of Science & Technology), Ma Guangping, et al (Zhaoguan Power Station)// Journal of Engineering for Thermal Energy & Power. -1998, 13(2). - 104~ 107

The results of an on-site industrial test have shown that the use of internal and outer spiralfinned tubes (called IOSF tube for short) with a small spiral angle for power station highpressure heaters can bring about a significant heat transfer intensification effect. With a measured total heat transfer factor being 1. 43 times of that of a bare tube heater the resulting economy in heat exchanger heating surface can be as high as 30%. It use under an equivalent heat exchange surface area may result in notable energy-savings. Key words internal and outer spiral-finned tube, spiral-grooved tube, bare tube, intensified heat transfer, total heat transfer factor

一种应用于三联产系统的新型的物料回送阀的试验 = A Test on a New Type of Raw Material Return Feed Valve for a Steam-Gas-Electricity Triple Production System [刊,中]/Zhang J, Cao Yuanquan, Qian Jianqing, et al (Zhejiang University)// Journal of Engineering for Thermal Energy & Power. -1998, 13(2). - 108~111

A brief description is given of the characteristics of the test operation of a novel return feed value in combination with the features of other raw material return feed values. Discussed are