仿真与计算

文章编号:1001-2060(2000)03-0272-05

油田射孔器材试验装置加热系统 的数学模型与仿真分析

(哈尔滨工业大学 仿真技术中心, 黑龙江 哈尔滨 150001) 刘翠玲 王子才 (大庆射孔器材检测中心, 黑龙江 大庆 163000) 孙新波 宁殿双^{*}

摘 要: 根据射孔器材 耐高温高压试验装置的技术要求,设 计了井式双循环电加热炉系统,建立了该加热炉炉膛传热过 程的数学模型。通过仿真,分析了该加热系统工艺参数对沿 程温度场分布的影响,为高精度控制该装置高温高压釜内的 油温度起到了指导和预测作用。在实际测量中验证了该模 型计算的有效性。

关键 词: 传热; 数学模型; 加热炉; 温度场; 仿真

中图分类号: TK14, TP391.9 文献标识码: A

1 引言

油田射孔器材检测实验装置,是用于模拟油井 下环境状态来检验射孔器材的耐高温高压情况的一 种试验装置,主要设备是高温高压釜体,釜内的超高 压由液压控制系统实现,压力高达 200 MPa ±1 MPa, 加热装置采用井式双循环电加热炉,如图 1 所示,控 制目标是使釜内油温均匀且尽快达到 300 ±1℃,并 在一定时间内保持温度、压力恒定。

料砌筑而成;电热元件为螺旋状高电阻电热合金件

分四区布于炉侧;循环及风冷系统由风机、切换阀及 管道构成。循环及风冷系统有两个作用,一是在加 热及保温阶段强制炉内热气循环,增强炉温均匀性, 釜体轴向沿程温度分布差≤±3℃;二是提高升降温 速度,在3小时内,釜内液压油温达到300℃,而在冷 却阶段通过切换阀使循环风机吸入冷风排出炉内热 量,加速降温过程以提高工作效率。

由于釜体的径长比很小(0.390/3.5),炉膛温度 的轴向均匀性是保证釜体及内部液压油温度均匀的 前提,也是实现釜内油温高精度控制的重要保证,因 此建立该加热系统的数学模型进行数值模拟及仿真 分析是十分必要的。本文根据工艺过程建立了有关 电热层温度 T₂、炉膛空气温度 T_g、釜体表面温度 T₁ 的数学模型,对炉膛内的传热工况进行了数值模拟, 对轴向温度的均匀性进行了分析,得出了各参数对 炉膛温度分布的影响情况,为炉子电热分布及设计 提供参考依据,为下一步的控制方案的设计提供了 指导。

2 传热原理

在井式加热炉供热 Q = 常数条件下,炉子与釜 体表面之间进行的是辐射 — 对流复合传热过程。由 电热产生的热能,一部分以对流换热形式传给环道 中的空气,一部分以辐射形式传给釜表面。对釜表面 而言这部分能量,一部分吸收使釜体温度升高,一部 分又以辐射形式传给电热层。热空气与釜面以强制 对流的方式传热,釜体也产生辐射热能给电热层,最 终实现对釜体的加热。

一般影响炉膛内轴向沿程温度分布均匀性的主 要因素有:

(1) 炉体表面散热造成的炉膛高度(轴向) 方向

收稿日期: 1999-07-02 *大庆采油八厂工程技术大队

斯一玻茲

的温度不均匀性,

(2) 炉膛内热量传输方式对炉温均匀性的影 响;

(3) 电热布置方式对温度均匀性的影响;

(4) 炉膛结构、炉衬结构及密封性对炉温均匀 性的影响;

(5) 控制系统对炉温均匀性的影响。

本文重点讨论炉膛内热量传输方式及有关因素 对炉膛内空气沿程温度分布的影响,建立炉子与釜 表面之间进行的辐射 — 对流复合传热过程的数学 模型,由此计算炉膛环道湍流透热空气温度的沿程 分布、釜壁温度分布及电热层温度分布,并讨论半径 比 γ、电功率 *Q* 和空气流量*G* 对其的影响。

3 建立物理和数学模型

设釜体外壁温度为 *T*₁,半径为 *R*₁ 的圆筒;炉子 电热件组成与釜同轴的外圆筒,半径为 *R*₂,温度为 *T*₂;空气的温度为 *T*_g。根据前面所述加热过程,炉膛 空气的流动可近似用图 2 所示物理模型来表述。

(4) 炉子电热面单位长度热流密度 $q_2 =$ 常数, 炉体的热损失 q_0 恒定,约 5%。 q_1 釜体吸热量。

(5) 不计釜体和空气的轴向传导。

将能量守恒原理分别应用于任一长为 dx 的环 形微元气体、釜体表面和炉子电热表面, 如图 3 所 示, 它们的温度分别为 T_{gi}, T_{1i}, T_{2i}, *i* 为沿程划分的 区间号。可获得下列三个微分方程式:

$$GC_{p} \frac{\partial T_{gi}}{\partial x} dx = h_{1}(T_{1i} - T_{gi}) dA_{1} + h_{2}(T_{2i} - T_{gi}) dA_{2}$$
(1)
G-空气的流速 kg/s,
 $C_{p} - 空气的比热[J/(kg \circ K)]$
② 炉子电热面热平衡
 $q_{2}dx + \alpha_{2} \int J_{1}(dA_{1,i})K(dA_{1,i}, dA_{2}) dA_{1,i} dA_{2} + \alpha_{2} \int J_{2}(dA_{2,i})K(dA_{2,j}, dA_{2}) dA_{2,j} dA_{2}$
 $= \varepsilon_{2} \sigma_{0} T_{2i}^{4} dA_{2} + h_{2}(T_{2i} - T_{gi}) dA_{2} + q_{1}$ (2)
③ 釜表面的热平衡
 $\alpha_{1} \int J_{2}(dA_{2,j})K(dA_{2,j}, dA_{1}) dA_{2,j} dA_{1}$
 $+ \alpha_{1} \int J_{1}(dA_{1,i})K(dA_{1,i}, dA_{1}) dA_{1,i} dA_{1}$
 $= \varepsilon_{1} \sigma_{0} T_{1i}^{4} dA_{1} + h_{1}(T_{1i} - T_{gi}) dA_{1} + q_{1}$ (3)
 $i, j = 1, 2, \dots, n, n$ 为釜体长 L 的分段数.
 T_{1i}, dA_{1}
 T_{2i}, dA_{2}
 T_{1i}, dA_{1}
 T_{2i}, dA_{2}
 $T_$

曼常数 $(5.67 \times 10^{-8} \text{W}/(\text{m}^2 \cdot \text{k}^4))$, J_1 , J_2 为釜壁、炉 子电热层微元面积 $dA_{1,i}$, dA_{2j} 的有效辐射, K 为积 分方程核函数, 反映微元面 $dA_{1,i}$ 和 dA_1 、 $dA_{1,i}$ 和 dA_2 、 dA_{2j} 和 dA_1 、 dA_{2j} 和 dA_2 之间的几何辐射角系 数关系。

微元面示意图

式(1)、(2)、(3)构成一个颇为复杂的微分方程 组,其解析解是十分困难的或不可能的,必须进行化 简。

4 离散化模型

根据差分原理,离散上面的(1)、(2)、(3)式,同 时采用随机模拟的 Monte — Carlo 数值方法计算釜 壁、电热层诸微元面之间的辐射交换系数,以取代复 杂的核函数 $K(dA_{1, i}, dA_{2})$ 、 $K(dA_{2, j}, dA_{1})$ 、 $K(dA_{1, j}, dA_{1})$ 及 $K(dA_{2, j}, dA_{2})$ 的运算,经推导整理后,分别 得到如下三个代数方程:

21994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

$$G(C_{p, m}T_{g, m} - C_{p, m-1}T_{g, m-1})$$

= h₁, m-1(T₁, m - T_g, m)A₁, m + h₂, m-1(T₂, m - T_g, m)A₂, m (4)

$$q_{2} \frac{L}{n} + \frac{\varepsilon_{1} \sigma_{0} A_{1, m}}{N} \sum_{j=1}^{n} C(1, j, m) T_{1, j}^{4} + \frac{\varepsilon_{2} \sigma_{0} A_{2, m}}{N} \sum_{j=1}^{n} C(2, j, m) T_{2, j}^{4} = \varepsilon_{2} \sigma_{0} T_{2, m}^{4} A_{2, m} + h_{2, m-1} (T_{2, m} - T_{g, m}) A_{2, m} + q_{1}$$
(5)

$$\frac{\varepsilon_{1}\sigma_{0}A_{1,m}}{N}\sum_{i=1}^{n}C(1, i, m)T_{1,i}^{4} + \frac{\varepsilon_{2}\sigma_{0}A_{2,m}}{N}\sum_{i=1}^{n}C(2, i, m)T_{1,i}^{4}$$

$$= \epsilon_{1}\sigma_{0}T^{4}_{1, m}A_{1, m} + h_{1, m-1}(T_{1, m} - T_{g, m})A_{1, m} + q_{1}$$
(6)

$$m = 1, 2, ..., n,$$

其中 C(1, i, m), C(2, i, m)表示第 m 个分区釜 壁吸收第i个分区釜壁、炉子电热层发射的能束数: C(1, j, m)和 C(2, j, m)表示第 m 个分区炉子电热 层吸收第 ; 分区釜壁、炉子电热层发射的辐射能束 数, N 为某一分区釜壁或炉子电热层发射的总能束 数, $A_{1,m}$, $A_{2,m}$ 分别为第m 个分区釜壁和电热层的面 积。

将相应分区表面之间的辐射传递系数分别记 为:

$$F_{1.1}(i, m) = \frac{C(1, i, m)}{N},$$

$$F_{2.1}(i, m) = \frac{C(2, i, m)}{N},$$

$$F_{1.2}(j, m) = \frac{C(1, j, m)}{N},$$

$$F_{2.2}(j, m) = \frac{C(2, j, m)}{N}$$

代入(4)、(5)、(6) 式,且注意 $h_1 = h_2 = h$,经整 理可得:

$$- GC_{p, m}T_{g, m-1} + (GC_{p, m} - h_{m-1}A_{1, m} + h_{m-1}A_{2, m})T_{g, m} - h_{m-1}A_{1, m}T_{1, m}$$

$$-h_{m-1}A_{2 m}T_{2 m}=0$$
(7)

$$- h_{m-1}A_{2,m}T_{g,m} + (h_{m-1}A_{2,m} + \varepsilon_{2}\sigma_{0}A_{2,m}T_{2,m}^{3})T_{2,m}$$

$$- \varepsilon_{2}\sigma_{0}A_{1,m}\sum_{j=1}^{n} \frac{C(1,j,m)}{N}T_{1,j}^{4}$$

$$- \varepsilon_{2}\sigma_{0}A_{2,m}\sum_{j=1}^{n} \frac{C(2,j,m)}{N}T_{2,j}^{4} = q_{2}\frac{L}{n} - q_{0}$$

$$\blacksquare$$

$$-h_{m-1}A_{2,m}T_{g,m} + (h_{m-1}A_{2,m} + \varepsilon_2\sigma_0A_{2,m}T_{2,m}^3)T_{2,m}$$

$$- \epsilon_1 \sigma_0 A_2 \, {}_{m_{j=1}}^{n} F_{2\,2}(j, m) T_{2\,j}^3 \circ T_{2,j} = q_2 \, \frac{L}{n} - q_0$$
(8)

同理可得:

$$-h_{m-1}A_{1,m}T_{g,m} + (h_{m-1}A_{1,m} + \epsilon_{1}\sigma_{0}A_{1,m}T_{1,m}^{3}) T_{1,m}$$

$$-\epsilon_{1}\sigma_{0}A_{1,m}\sum_{j=1}^{n}F_{1,1}(i,m)T_{1,i}^{3} \circ T_{1,i}$$

$$-\epsilon_{2}\sigma_{0}A_{2,m}\sum_{j=1}^{n}F_{2,1}(i,m)T_{2,i}^{3} \circ T_{2,i} - q_{1} = 0$$
(9)

m = 1, 2, ..., n

h(7)、(8)、(9)式共组成了 3× n 个本质上是非 线性的代数方程组, 3× n 个变量: T₁, i, T₂, i, T_g, m 且 $i, j, m = 1, 2, \dots, n$.

其系数矩阵是非奇异的,有非零解。在正式迭代 计算前,需当根据单值性条件,确定方程中包含的全 部参变量。

参变量的确定及计算步骤 5

$$P = \frac{RT(1 - \frac{c}{vT^3})}{v^2} \left[v + B_0(1 - \frac{b}{v})\right] - \frac{A_0}{v^2}(1 - \frac{\alpha}{v})$$
(10)

其中:P - 空气压力(Pa), T - 空气温度(k) 即 T_{g} , v—比容 $\left[\frac{m^{3}}{kg} \right]$ 式中参数: $A_0 = 1.572$ 04×10²J.m³/kg² $a = 6.667 \ 82 \times 10^{-4} \text{m}^{-4} \text{m}^{-4} \text{kg}$ $B_0 = 1.592.20 \times 10^{-3} \text{m}^3/\text{kg}$ $b = -3.801 80 \times 10^{-4} \text{m}^{3}/\text{kg}$ $c = 1.498.62 \times 10^3 \text{m}^3 \text{K}^3/\text{kg}$ $R = 287.11 \text{J/kg} \circ \text{K}$ ②比热. $C_{\mathcal{P}}(P, T) = C_{\mathcal{V}}(P, T)$ $+\frac{R\{v+B_{0}(1-\frac{b}{v})\}^{2}}{\frac{2pv^{3}}{RT}-\frac{CB_{0}}{T^{3}}(1-\frac{2b}{v})-v^{2}-B_{0}b+\frac{A_{0}\alpha}{RT}}$ (11)

$$C_{v}(P, T) = C_{v0}(T) + \frac{6RC}{T^{3}v} \left[1 + \frac{B_{0}}{v}(\frac{1}{2} - \frac{b}{3v})\right]$$

 $\epsilon_2 \sigma_0 A_{1, m} \sum_{j} F_{1, 2}(j, m) T_{1, j}^3 \circ T_{1, j}$ (12) ?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

ν

其中各系数同(10)式

$$C_{v0}(T) = R \sum_{n=0}^{4} b_n T^n - R$$
(13)

其中(13)的各参数为 $b_0 = 3.688476$ $b_1 = -1.642285 \times 10^{-3}$ $b_2 = 4.196653 \times 10^{-6}$ $b_3 = -2.986517 \times 10^{-9}$ $b_4 = 7.194228 \times 10^{-13}$ ③ 粘度

$$\eta_{\rm l} = \frac{D_{\rm l}\sqrt{7}}{(1+\frac{D_{\rm 2}}{T})} \quad \text{[kg/m.s]}$$
(14)

其中 $D_1 = 1.5086 \times 10^{-6}, D_2 = 124.45$ (2) 环道空气对流换热系数 h

$$Nu = 0.93 \frac{h^{\circ} d_{\rm h}}{\lambda}$$
$$= \frac{\xi/8(Re - 1000)P\left[1 + (\frac{d_i}{L})^{\frac{2}{3}}\right]}{1 + 12.7 \sqrt{\xi/8}(Pr^{\frac{2}{3}} - 1)}$$
(15)

$$\xi = (1.82 \lg Re - 1.64)^{-2}$$
(16)

其中:Nu一努谢尔特准数,

- Pr-普朗特准数,
- ^ξ-环道内的阻力系数,
- Re-环道内空气的雷诺数,

dh-环道的水利直径。

(3) 辐射传递系数 F 的计算

采用 Monte — Carlo 法^[3], 取电热层面发射的总 能束数 $N = 10^5$ 。

(4) 初始条件

根据入口参数,确定所有节点的温度试探值,然 后利用上述方法计算沿程压力分布、物性参数、换热 系数等。有了方程(7)、(8)、(9)中的全部系数后,求 解该方程组,得到诸节点温度值。

6 仿真分析

为了揭示双循环井式加热炉炉膛的温度分布规 律,对炉膛环形通道的对流 — 辐射复合传热过程, 利用上述数学模型,进行了计算机仿真分析。

射孔器材耐高温高压装置的井式加热系统参数 如下: $R_1 = 195 \text{ mm}$, $R_2 = 375 \text{ mm}$, L = 4000 mm, $G_N = 6000 \text{ m}^3/\text{h}$ 。 环计算时的入口温度为 T_{gn} — △T, △T 为风在管道循 环时因热损失造成的炉膛入口风温度的下降, 在某 一工作循环中设为一个常数。

6.1 沿程温度分布的均匀性

釜壁温度、炉子电热温度、气流温度沿程分布状况如图4所示,它们具有相同的态势,*T*g沿程温度 ≪±3 ℃,满足该状置的技术要求。

图4 炉膛和釜体沿程温度分布

6.2 炉膛环形尺寸对温度均匀性的影响

炉膛环形尺寸可用半径比 $\gamma = R_1/R_2$ 来表示。 γ 愈大, 环道间隙便越小, 在其它条件不变时, 增大 γ , 环空空气流速增大, 因辐射和对流传热改变引起 的总效果, 釜面温度 T_1 下降, 电热层温度 T_2 增加, 但温度沿程的均匀性受到不良影响。

6.3 加热功率和空气流量对温度场分布的影响

热稳定状态下,加热电功率 Q 等于釜面、电热 层对流换热量 Q_1 与 Q_2 之和, $Q = Q_1 + Q_2$, 釜面和 电热层的温度 T_1 、 T_2 将随 Q 的加大而增高,随 G 的 增加而下降。这一变化可通过釜体壁、电热层温度的 过余温度之比 C_1 来描述,其定义为

$$C_{\rm t} = \frac{T_2 - T_{\rm g}}{T_1 - T_{\rm g}} \cdot \frac{1}{\gamma} \tag{19}$$

图 5 给出了 C₁ 随 Q 和G 变化的曲型计算结果, 曲线表示,随加热功率 Q 增加,釜壁温度将增加,随 空气流量 G 的加大, T₁ 温度下降得比 T₂ 快。

7 结论

空气入口的初始温度为 $T_m = 400$ $^{\circ}$ C. 在下一循 ?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 件的入射角度值改变,而其余下层一次风,二次风仍 取设计值,这样构成上层二次风与下层二次风的反 切。分四种工况,见表 1。

表1 上层二次风反切工况

工况	与背火侧夹角	与向火侧夹角	与下层二次风反切角度
1	48°	42°	5 43°
2	53 [°]	37 [°]	10 43°
3	58°	32 [°]	15 43°
4	63 [°]	27 [°]	20 43°

模拟这四种工况并比较水平烟道下部相对高 度J = 0.21, J = 0.342两个水平截面中沿烟道宽度 方向速度的分布,见图 3。从图中J = 0.21截面看出 第四工况反切角度最大时,烟道左侧气流速度明显 增加,水平不均匀性有所降低。这说明上层二次风反 切角度增大时,水平烟道横向烟气速度分布不均得 到改善。为了能更深入地分析水平烟道烟气流量偏 差问题,我们定义速度不增匀系数 $arepsilon = (V_{
m max} - V_{
m max})$ Vmin)/V,各参数分别代表同一计算截面内速度的最 大值、最小值与平均值。表2给出了当最上层二次风 反切角为 20.43° 时 ε 的计算结果。而四个反切工况 与原设计工况 € 的对比则见表 3。从表中可以看出随 着反切角度增大,下部水平烟道的速度不均匀性明 显降低,中上部更趋于均匀,但J = 0.08截面,也就 是最下层水平烟道的 ∈ 仍在 2.0 以上,这是由于折焰 角转弯后右侧气流的烟气短路造成的。总的来说,上 层二次风大角度反切有利干降低炉膛出口水平烟道 的气流偏差。

表 2 工况 4,反切角 度为 20.43 度时的水平烟道中的 ε

相对高度	$\tilde{\xi}J =$	J =	J =	J =	J =	J =	J =]
参数	0 08	0 21	0 342	0 473	0. 605	0.736	0.868	
m/s	68	7.78	7.95	7. <i>7</i> 7	7.46	7.11	6.57	max
m/s	0 45	2 15	3.40	4. 22	4.89	5.55	5.95	.
m/s	2 91	4 43	5. 31	5. 79	5. 98	6.15	6.24	min
ε	2 18	1 27	0.85	0. 61	0.43	0.25	0. 09	ļ

(上接 275 页)

度场数学模型,并通过数字仿真分析了炉膛沿程方向温度场的分布。与实测结果比较,证明了该模型的可行性,基本反映了井式加热炉炉膛内的辐射一 对流复合传热的实际工况。从理论上分析了炉膛温 度的均匀性。

(2)通过该模型仿真,讨论了环形空间大小、电 热功率、空气流量对温度场的影响情况,为工艺设计 表 3 最上层二次风四个反切工况 与原设计工况 ε 的对比

高度	J =	J =	J =	J =	J =	J =	J =
	0. 08	0.21	0.342	0.473	0 605	0 736	0 868
原设计	3.34	2.84	2.59	2 23	1 66	0 74	0.39
反切 5度	3.36	2.40	1.75	1 07	0 65	0 31	0. 08
反切 10度	3. 53	2.46	1. 55	0 95	0 57	0 26	0. 09
反切 15度	3. 39	2.07	1.26	0 79	049	0 25	0.06
反切 20度	2.18	1. 27	0.85	0 61	0 43	0 25	0. 09

3 结论

本文数值模拟计算表明,采用适当减小炉内假 想切圆直径或将最上级二次风相对下部二次风反切 引入的方法可以降低炉膛出口水平烟道的烟气流量 偏差。当采用最上层二次风反切时,反切角为 20~ 25度时基本可以抵消炉内主气流旋转从而降低水 平烟道内的速度不均匀性,然而,采用上述方法后, 炉内用于组织燃烧的流场旋转强度将会下降。因 此,如何选取炉内假想切圆直径与最上级二次风反 切角度需综合考虑燃烧组织和气流偏差的问题。

参考文献

- 【1】 张政译, 帕坦卡 S V 著. 传热与流体流动的数值计算. 北京: 科学出版社, 1984.
- (2) Doormaal P Van, Raithby G D. Enhancements of the simple method for predicting in compressible fluid flow. Numerical Heat Transfer, 1984, 7.
- 〔3〕 岑可法 樊建人. 燃烧流体力学. 北京:水利电力出版社, 1991.

(渠 源 编辑)

及控制方案的确定起到了很好的参考指导作用。

参考文献

- 〔1〕 杨世铭主编. 传热学. 北京:高等教育出版社,1987.
- 〔2〕 居怀明. 载热质热物性计的程序及数据手册. 北京: 原子能出版社, 1990.
- [3] 卞伯绘.辐射换热的分析与计算.北京:清华大学出版社, 1988.

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. (某源 编辑)

words: steam turbine, power output uprating

应用于 PRSTIG 循环化 SIA-02 燃气轮机组上的喷射器=An Ejector Used for the Model SIA-02 Gas Turbine Unit of a Partial Regeneration Steam Injected Gas Turbine (PRSTIG) Cycle [刊,汉] / Wen Xueyou, Lu Ben (Harbin No. 703 Research Institute, Harbin, China, Post Code 150036) //Journal of Engineering for Thermal Energy & Power. -2000, 15(3). -269 ~271

A major constituent element of a partial regeneration steam injected gas turbine (PRSTIG) cycle system, the ejector was designed in adaptation for a model SIA-02 small-sized gas turbine. An analysis of the ejector design is also presented in the paper. Key words: partial regeneration steam injected gas turbine cycle, steam injected gas turbine cycle, ejector

油田射孔器材试验装置加热系统的数学模型与仿真分析= Mathematical Modeling and Simulation Analysis of the Heating System of an Oil Field Perforation Equipment Test Rig [刊,汉] / Liu Cuiling, Wang Zicai, Sun Xingbo *et al* (Simulation Technology Research Center under the Harbin Institute of Technology, Harbin, China, Post Code 150001) // Journal of Engineering for Themal Energy & Power. -2000, 15(3). -272 ~ 275, 283

Based on the technical requirements of a perforation equipment test rig concerning its ability to bear high-temperature and high-pressure, the authors have designed a well-type dual-circulation electric heating furnace. A mathematical model of the heating-furnace heat transfer process has been set up. By way of simulation an analysis was conducted of the effect of the heating system process parameters on the temperature field profile along the flow path of the furnace. Such an analysis plays a significant role in providing guidance for high-precision control and prediction of the oil temperature in the heating system. The validity of the mathematical model has been verified by the actually measured results. **Key words:** heat transfer, mathematical model, heating furnace, temperature field, simulation

锅炉过热器系统的动态仿真模型= Dynamic Simulation Model for a Boiler Superheater System [刊,汉] / Chen Xiaodong, Wang Zicai (Simulation Technology Research Center under the Harbin Institute of Technology, Harbin, China, Post Code 150001) //Journal of Engineering for Thermal Energy & Power. -2000, 15(3). $-276 \sim 277$, 297 As a mechanism model can hardly reproduce the complicated dynamic characteristics of a boiler superheater system, the authors have come up with a new modeling method. The proposed method consists in taking the mechanism model as a main guide and supplementing it with an on-line correction through the use of a dynamic neural network. The results of simulation indicate that such a model building method can provide an ideal approach for the dynamic simulation of a huge complicated system. Key words: boiler, superheater, simulation, model building method

汽轮机本体分段式通用模块化建模与仿真= Modeling and Simulation of a Steam Turbine Proper through the Use of a Sectionalized General-modularization [刊,汉] / Zhu Wei, Jiang Zikang, Cheng Fangzhen, *et al* (Department of Thermal Engineering, Qinghua University, Beijing, China, Post Code 100084) // Journal of Engineering for Thermal Energy & Power. -2000, 15(3). -278~280, 293

Described in this paper is the modeling of a steam turbine proper with the help of a sectionalized general-modularization. Furthermore, with a model C50-90/13 steam turbine being selected as an example, simulation results are given of the steam turbine under various operating conditions and pertinent analyses were also performed. Currently, the above-cited model has been successfully employed for an actual simulation object. Featuring a relatively high precision and versatility in engineering applications, it is suited for simulating steam turbines under various operating conditions. Key words: steam turbine, simulation, general modularization, modeling

二次风喷射角度对切向燃烧炉膛出口烟气流量偏差的影响= The Effect of a Secondary Air Injection Angle on the Deviation of Flue Gas Flow Rate at a Tangentially Fired Furnace Outlet [刊,汉] / Zhao Yuan, Dong Peng, Qin Yukun, *et al* (College of Energy Science and Engineering under the Harbin Institute of Technology) // Journal of Engineering for Thermal Energy & Power. -2000, 15(3). -281 ~283

In a tangentially fired large-sized boiler there generally occurs a common phenomenon of flue gas flow, deviation on the