文章编号: 1001-2060(2001)03-0340-03

燃油燃气锅炉高温烟箱绝热密封材料的改造

韩相忠

(西安建筑科技大学 材料系, 陕西 西安 710055)

摘 要: 就高铝硅酸铝纤维板作为耐高温抗风蚀材料, 在高温烟箱上的应用做了详细的阐述, 提出了耐火纤维复合炉衬的计算方法, 在锅炉设计中具有实用性.

关键 词: 燃油燃气锅炉;高铝硅酸铝纤维板;复合炉衬中图分类号: TK225 文献标识码: B

1 前言

中心回焰式锅炉的前烟箱门,三回程锅炉的干背及烟箱门均受到 900 °C~1 100 °C高温烟气的加热和冲刷,如果这种高温烟箱的绝热和密封不好,将直接影响锅炉的使用寿命,甚至导致锅炉不能正常运行。

国产燃油燃气锅炉的高温烟箱门多采用轻质耐热混凝土, 莫耒石轻质浇注料。这种材料的密度一般为 1 200~1 500 kg/m³, 虽然比重质炉衬轻了很多, 但做出的炉门仍然很重。在使用过程中容易出现裂纹, 导致绝热层过早脱落。为了克服轻质耐热混凝土炉衬的上述缺点, 笔者尝试用耐火纤维板做高温炉门衬材料, 收到良好效果。

2 耐火纤维做高温炉衬材料的优点

2.1 重量轻

耐火纤维制品的容重为 $130 \sim 220 \text{ kg/m}^3$,仅为轻质耐热混凝土容重的 $10\% \sim 15\%$ 。 用耐火纤维制品做炉衬材料重量轻,炉门开启轻便。

2.2 绝热效果好

耐火纤维制品的导热系数为 $0.03~0.04~W/(m^{\circ})$ 、轻质耐热混凝土的导热系数为 $0.4~0.5~W/(m^{\circ})$ 。 根据传热原理,散热量 $q=\frac{\lambda}{S}$ 公,式中 λ 为导热系数,S 为炉衬厚度, Δ 为炉衬内外表面温度差。如果 q 不变,则 λ 与 S 成反比。所以用耐火纤维做炉衬材料,厚度可以减薄。

2.3 使用寿命长

耐火纤维毡及其它制品耐急冷急热性好,非常适应燃油燃气锅炉经常停开的工作特点。因此使用寿命长。

2.4 隔音效果好能减少燃烧产生的噪音。

2.5 价格适宜

耐火纤维制品的价格虽然比轻质耐热混凝土贵,但由于采用复合炉衬,重量轻,费用与轻质耐热混凝土接近。

3 高温烟箱炉衬的结构

3.1 材质的选择

耐火纤维的材质不同,使用温度也不同(表1)。

表 1

纤维名称	最高使用温度/ ℃	安全使用温度/ ℃
普通硅酸铝纤维	1 150	≤1 000
高纯硅酸铝纤维	1 260	≤1 100
高铝硅酸铝纤维	1 400	≤1 200
微晶硅酸铝纤维	1 400	≤1 250
纯料含锆硅酸铝纤维	1 450	≤1 350
莫耒石纤维	1 600	≤1 300
氧化铝纤维	1 600	1 400 ~ 1 450

表 1 中可以看出,从使用温度和价格上考虑,锅炉烟箱门衬的工作层(接触火焰部位)宜采用高铝硅酸铝纤维,保温层宜采用普通硅酸铝纤维。

3.2 品种的选择

耐火纤维制品的品种很多,有耐火纤维棉、耐火纤维板、针刺毯、毡,耐火纤维砖,纤维管、绳等。其中大部分不抗风蚀,即耐不住高速气流的冲刷。而锅炉烟箱的门衬必须抗 20 m/s 以上烟速的冲刷,特制的耐火纤维板可以满足这一要求。锅炉烟箱门衬最好选耐高温、抗风蚀的高铝纤维板做工作层,普通硅酸铝纤维(不一定要求抗风蚀)做中间保温层,外保温层可选用价格低廉的岩棉毡,构成复合层。这

种复合层炉衬既经济又实用。

- 拉杆: 2- 夹紧板: 3-炉门 框板:4-高铝硅酸铝纤维板: 5-普通硅酸铝纤维毡: 6-岩 棉毡

图 1

3.3 炉衬的固定方法

炉门先用金属做成框 架,把耐火纤维平铺在框 架内,用高温胶粘牢,并用 耐热钢金属拉杆固定(见 图 1)。

耐火纤维受到高温加 热后要产生收缩,使接缝 变大, 因此各层间的接缝 要错开,接缝要挤紧粘牢。 固定金属拉杆及类板要采 用耐热材料,温度低于 1000 ℃的部位采用不锈 钢, 温度高于1 000 ℃的部 位用耐热钢(Cr25Ni20)。

复合层炉衬各层厚度的计算

根据最佳热能原理, 炉衬有一个经济厚度, 其值 可根据稳定态传热来求得。

稳定态传热公式 $q=-\lambda \frac{\mathrm{d}t}{\mathrm{d}x}$

式中: q一散热量, W/m^2 ; λ 一导热系数, $W/(m \cdot ^{\circ})$; t 一 温度, $^{\circ}$ С。

各种玻璃态耐火纤维毡或毯的导热系数可用下 式计算: $\lambda = e^{A+Bt}$

式中A 和B 一常数,数值见表 2。

	1	D	
密度/kg°m ⁻³	平面方向传热	侧面方向传热	В
96	- 3. 18	- 2.92	1.94×10^{-3}
128	- 3. 18	-2.92	1.74×10^{-3}
160	— 3 . 17	-2.91	1.63×10^{-3}
192	-3.13	— 2 . 87	1.49×10^{-3}
288	-3.05	— 2 . 7 9	1.25×10^{-3}

将
$$\lambda = e^{A+Bt}$$
 代入 $q = -\lambda \frac{\mathrm{d} t}{\mathrm{d} x}$,

 $X = \frac{1}{qB} (e^{A+Bt_{N}} - e^{A+Bt})$ (m)

式中: t 一炉衬内某一点的温度, ${}^{\circ}$ C; $t_{\rm N}$ 一炉衬内表面 温度, ${}^{\mathbb{C}}$, X 一 炉衬内某一点距内表面距离, m, q — 稳定态热损失,W/m²。

各层间的介面温度可用下式计算

$$t = \frac{1}{R} \left[\ln(e^{A+Bt} - qBX) - A \right] \quad (^{\circ}C)$$

炉门外壁对空气的总散热量 a 用下式计算

$$q = \alpha_{\Sigma} (t_{\rm w} - t_{\rm h})$$

式中: α_{Σ} 一垂直平面(涂漆)对空气的总散热系数,

$$\mathbb{W}/(\mathbf{m}^2 \cdot ^{\circ}\mathbb{C});$$

 t_w 一 炉门外表面温度, $^{\circ}$ C:

 t_h 一环境温度,℃。

表 3 ας 的数值

外表面温度 / ℃	40	60	80	100	120
α_{Σ}	8. 236	9.57	10.556	11.484	12. 296

用实例说明上述各式的计算方法。

例题:中心回焰式燃 气锅炉的前烟箱门采用耐 火纤维复合炉衬:工作层 材质为高铝硅酸铝纤维 板,密度 $\rho = 128 \text{ kg/m}^3$,厚 度为 X_1 ,导热系数为 λ_1 ; 中间层为普诵硅酸铝纤维 毡, $\rho = 96 \text{ kg/m}^3$,厚度为 Χ₂, 导热系数为 λ₂: 外保 温层选用岩棉毡, $\rho=160$ kg/m^3 , 厚度为 X_3 , 导热系

数为 λ_3 。又知炉门衬内表面温度为 $t_N = 1000$ °C, 炉 门外表面温度为 $t_w = 60$ °; 环境温度为 10 °(冬 季), 试计算炉门衬各层厚度。

解: 假设内层与中间层的介面温度 $t_1 = 950$ ℃(普通硅酸铝纤维的安全使用温度);中间层与外 层的介面温度为 $t_2 = 600$ °C(岩棉的安全使用温度)

$$q = \alpha_{\Sigma}(t_{\text{W}} - t_{\text{h}}) = 9.57 \times (60 - 10) = 478.5 \quad (\text{W/m}^2)$$

根据 $\rho = 128 \text{ kg/m}^3$, 查表 2 得 A = -3.18 B =1. 74×10^{-3}

$$\text{ for } X_1 = \frac{1}{478.5 \times 1.74 \times 10^{-3}} \times (e^{-3.18 + 1.74 \times 10^{-3} \times 1000} - e^{-3.18 + 1.74 \times 10^{-3} \times 950}) = 0.02356 \text{ (m)}$$

选用厚度为 0.03 m。

t1 的校核:

$$t_1 = \frac{1}{1.74 \times 10^{-3}} \left[\ln \left(e^{-3.18 + 1.74 \times 10^{-3} \times 1.000} - 478.5 \times 1.74 \times 10^{-3} \times 0.03 \right) + 3.18 \right] = 936 \, ^{\circ} \text{C}$$

符合普通硅酸铝纤维安全使用温度要求。

根据 $\rho = 96 \text{ kg/m}^3$, 查得 A = -3.18 B = 1.94 $\times 10^{-3}$

 $t = \frac{1}{B}[\ln(e^{A+Bt_N} - qBX) - A]$ (°C) × 10 × 10 × 10 × 1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

$$X_2 = \frac{1}{478.5 \times 1.94 \times 10^{-3}} \times (e^{-3.18+1.94 \times 10^{-3} \times 936}$$
$$-e^{-3.18+1.94 \times 10^{-3} \times 600}) = 0.1318 \text{ (m)}$$

选用厚度为 0.13 m。

校核 to.

$$t_2 = \frac{1}{1.94 \times 10^{-3}} [\ln(e^{-3.18+1.94 \times 10^{-3} \times 936} - 478.5 \times 1.94 \times 10^{-3} \times 0.13) + 3.18] = 607 \, (^{\circ}\text{C})$$
符合要求。

根据 $\ell = 160 \text{ kg/m}^3$, 查得 A = -3.17 B = 1.63×10^{-3}

$$X_3 = \frac{1}{478.5 \times 1.63 \times 10^{-3}} \times (e^{-3.17 + 1.63 \times 10^{-3} \times 607}$$
$$- e^{-3.17 + 1.63 \times 10^{-3} \times 60}) = 0.085 \text{ (m)}$$

选用厚度为 0.085 m, t3 不需校核。

高温烟箱门与炉体间的密封

由干锅炉炉膛呈微正压(一般为100~200 Pa)。 所以密封压力不高,但是温度较高。在这种情况下 用耐火纤维毡做密封材料比石棉绳要好。但耐火纤 维毡耐压能力差,一般压缩比控制在3.1 范围内。 用耐火纤维毡密封可不必象石棉绳那样加密封槽。 用平面压紧即可。密封材料厚度 10~20 mm, 宽度 为 30~50 mm。

6 使用效果

抗风蚀耐火纤维复合炉衬及密封结构已经过一 个采暖期的考验,证明这种材料保温性能好,实际运 行中外表面温度仅 40 ℃ 炉门无跑烟漏气现象。采 暖期过后打开炉门观察,炉衬完好无损,证明材料选 择和结构设计是正确的。

> (辉 编辑)

(上接第312页)

但预测精度提高了一个数量级。图 4、图 5 分别是 P = 4 时的训练和预测的结果。

图 4 P = 4 时网络训练结果

从上述 P = 2 和 P = 4 训练和预测的结果可以 看出本文中的方法网络结构比文献[2]的结构简 单, 预测精度高。

5 结论

- (1) 采用基干增长型结构学习算法的 RBF 神经 网络, 具有结构简单、预测精度高的特点。 用于热电 厂热负荷预测获得了十分满意的结果。
- (2) 由于 RBF 神经网络不存在局部极小问题, 增长型结构学习算法自动构造近优的网络,从根本 上解决了过拟合问题,提高了网络的泛化能力。
- (3) 应用例子进一步说明了本文中的方法比文 献[2]中的方法更简单、合理、具有普遍性。

参考文献:

- 葛晓霞, 缪国君. 热电厂热负荷的预测方法[J]. 热力发电. 1996, **26**(2): 25-28.
- [2] 李勇,宋景东. 热电厂热负荷预测的神经网络方法[3]. 热能动 力工程. 1998 13(6): 447-448.
- [3] HORNIK K. Approximation capabilities of multilayer feedforward network[J] . Neural Networks, 1991, 4(2): 251-257.
- [4] FAHLAM S E, LEBIERE C. The cascade—correlation learning architecture[A]. Advances in Neural Information Processing System (2) [C]. Tourtzky, Eds. 1990; 524-532.

大尺寸四角切圆燃烧锅炉汽温偏差原因分析及措施— An Analysis of the Cause Leading to Steam Temperature Deviation in a Large-sized Tangentially Fired Boiler and Measures Taken for Its Alleviation [刊,汉] / ZHANG Yi, LI Ping-yang (Heilongjiang Provincial Academy of Electric Power Engineering, Harbin, China, Post Code: 150030), FU Zhi-hua (Harbin No. 703 Research Institute, Harbin, China, Post Code: 150036) // Journal of Engineering for Thermal Energy & Power. — 2001, 16(3). — 336~337

A comprehensive comparison was conducted of the results of the thermodynamic testing of a boiler with those of the boiler thermodynamic calculation followed by a pertinent analytic study. On this basis the pipe connecting a rear panel to the last row of a tube bank was changed from a cross-connected form to a parallel-connected one. Ensuing operation of the modified boiler indicates that such a modification has been highly successful. **Key words:** tangentially fired boiler, steam temperature deviation, cross-connected pipe

蓄冷空调的设计及经济分析 = The Design and Economic Analysis of a Chill Storage-based Air Conditioning System[刊,汉] / ZHANG Li-wei, WANG Jin-fong (Zhengzhou Light Industry Institute, Zhengzhou, China, Post Code; 450002), YANG Chong-ying (Henan Provincial Industrial School, Zhengzhou, China, Post Code; 450002) // Journal of Engineering for Thermal Energy & Power. —2001, 16(3). —338 ~339, 315

A chill storage-based central air conditioning system features a huge capacity for peak load shaving and fulfillment. Moreover, as compared with other conventional types of central air conditioning system it enjoys the advantage of a lower demand for main machine capacity and fairly low power consumption for its operation, contributing to bright prospects for its widespread applications. **Key words:** chill storage, central air conditioning, design

燃油燃气锅炉高温烟箱绝热密封材料的改造=Improvement of a Thermal-insulation Seal Material Employed for the High-temperature Smoke-box of an Oil and Gas-fired Boiler [刊,汉] / HAN Xiang-zhong (Xi' an University of Architectural Science & Technology, Xi' an, China, Post Code: 710055) // Journal of Engineering for Thermal Energy & Power. —2001, 16(3). —340~342

Aluminum fiber-plates of high-alumina silicate have been used for the high-temperature smoke-box of a boiler as a kind of high-temperature resistant and erosion-proof material to serve as boiler furnace composite lining. In addition to a detailed discussion of the above use, the authors have also provided a calculation method for the above-mentioned furnace lining. The paper may benefit those engaged in the design of oil and gas-fired boilers in general. **Key words:** oil and gas-fired boiler, fiber plate of high-alumina silicate, furnace lining, composite material

水膜式热力除氧器的改造= Technical Modification of a Water-membrane Type Thermal Deaerator [刊,汉]/ZHUANG Yu-ping, TAN Hong, FU Chang-hong (Harbin No. 703 Research Institute, Harbin, China, Post Code: 150036) // Journal of Engineering for Thermal Energy & Power. — 2001, 16(3). — 343 ~ 344

An analysis was conducted of the testing of a water-membrane generating pipe, the major internal element of a deaerator head. The optimum type of the pipe structural design has also been devised and demonstrated. Concerning some specific problems encountered during the operation of the water-membrane type thermal deaerator the authors have proposed a modification scheme, thus providing a new approach for the retrofit of the above type of deaerator commonly used in power plants. **Key words**: deaerator, water-membrane generating pipe, modification