文章编号:1001-2060(2001)05-0520-03

凝汽器喉部蒸汽流动的三维数值模拟

崔国民,蔡祖恢,李美玲 (上海理工大学热能工程研究所,上海 200093)

摘 要:应用具有超粒子模型的直接模拟蒙特卡罗方法,对 汽轮机凝汽器喉部进行区域分解和数学建模,及对具有典型 结构的凝汽器喉部蒸汽流动进行了三维数值模拟。重点分 析了凝汽器喉部流场的流动分布情况,揭示了喉部流场不均 匀性流动特点及其产生原因。

关 键 词: 凝汽器喉部, 数值模拟, 直接模拟蒙特卡罗法 中图分类号: TK 264. 1⁺ 1: 0242. 1 文献标识码: A

1 前言

凝汽器喉部是电站凝汽器的一个组成部分,直 接接受汽轮机末级排汽,并将蒸汽传输至主凝结区 进行凝结。喉部蒸汽的流动特性直接影响整个凝汽 器的安全和高效运行,同时也影响到整个电站循环 系统的效率。这主要是因为:一方面,当喉部的流动 汽阻增加时,汽轮机功率将相应地降低,例如喉部压 力损失为 0. 133 kPa,汽轮机功率将减少 0. 08%^[1], 同时,过大的汽阻将导致凝结水溶氧超标,加速冷却 管的腐蚀,另一方面,喉部流场不均匀的局部高速流 动是造成冷却管振动破坏的主要原因之一^[2]。因 此,喉部流动机理及其产生原因的研究一直是凝汽 器汽侧(喉部)研究的重点之一。

目前, 对凝汽器汽侧(喉部)流动的研究主要是 采用模型吹风实验的方法^[1], 并且已经成为凝汽器 结构设计的主要指导方法。相比之下, 在这方面的 理论研究, 尤其是复杂结构的喉部流场数值求解却 很少。鉴于此, 笔者应用直接模拟蒙特卡罗法^[3], 对 喉部的大空间、连续流体的三维流动问题进行数值 求解^[4]。通过对喉部流场的建模和模拟, 揭示了喉 部流场的流动机理及其主要影响因素。

2 喉部流场的建模和求解过程

2.1 物理模型和区域分解

为了使汽流的部分速度能转化为压力能,凝汽 器喉部通常被设计成具有一定扩散角度的棱台形。

程

其内布置有大量的 支撑管,对于大型电 站凝汽器,喉部内还 要布置低压加热器、 减温减压装置等0。 备。根据现有的喉 部结构建立物理模 型,如图1所示。为 了简化,该模型中只

示出了喉部壳体和低压加热器两个主要部分。为了 提高模拟速度和程序编制方便,对该喉部物理模型 进行适当的区域分解,具体方法如表1所示(断面网 格形状)。

表1 计算域区域分解情况

子区域	网格划分方法	处理方式	汽一壁碰 撞模型
入口区域	长方形	保持入口来流状态	不考虑与壁 面碰撞
前后竖壁区域	长方形	粒子与竖壁碰撞	系统坐标下的半球漫反射
斜壁区域	长方形+ 三角形	粒子与斜壁碰撞	当地斜壁坐标下的半球漫反 射,要转化为系统坐标
自由流区域	长方形	不与壁面碰撞	不考虑与壁 面碰撞
绕圆管区域	圆弧网格+ 不规则网格	粒子与圆柱壁碰撞	当地圆柱切面坐标下的半球 漫反射,要转化为系统坐标
出口区域	长方形	出流、结果统计	不考虑与壁 面碰撞

2.2 数学模型和求解过程

为了提高直接模拟蒙特卡罗方法的粒子跟踪速度,本研究应用了文献[4]的超粒子模型的方法,建 立了如下模拟过程(只包含主要的步骤和关键的一 些概率模型)。

2.2.1 任意网格内粒子初始位置的确定

设 *x*, *y*, *z* 的取值范围分别为[*x*min, *x*max], [*y*min, *y*max], [*z*min, *z*max], 则粒子的初始位置 *P*(*x*₀, *y*₀, *z*₀) 表示为:

 $(x, y, z)_0 = (x, y, z)_{\min} + R_x(\Delta x, \Delta y, \Delta z)$ (1) 其中 R_x, R_y, R_z 分别为x, y, z三个方向的分布随机 数; $\Delta x, \Delta y, \Delta z$ 分别为三个方向上的长度;当网格形 状不同时, R_x, R_y, R_z 具有不同的表示形式。 2.2.2 粒子运动速度概率模型

粒子初始位置确定后,根据局域热平衡下的麦 克斯韦尔速度分布率,三个速度分量 vx,vy,vz 可以 表示为:

 $(v_x, v_y, v_z) = v \circ (\sin\theta \cos\varphi, \sin\theta \sin\varphi, \cos\theta)$ (2)

其中, v 为粒子的速率, 有关其取法的概率模型 见文献[5]; θ 和 φ 为速度方向的天顶角和圆周角, 由 余弦定律产生, 表示为(R_{θ} 和 R_{φ} 为[0 ~ 1] 区间分布 随机数):

 $\theta = \cos^{-1} \left(1 - 2R_{\theta} \right) \quad \varphi = 2\pi R_{\varphi} \tag{3}$

2.2.3 粒子相互碰撞的判断

设粒子的当地碰撞频率为 *Z*,则粒子在单位时 间步 Δ*t* 内发生碰撞的几率 *P*。可以表示为:

$$P_{\rm c} = Z \circ \Delta_t \tag{4}$$

取[0~1] 区间均匀分布的随机数 *R*₀,有下列 关系存在:

当 $R_c \leq P_c$ 时,则认为粒子在单位时间步内发生了碰撞:

若 *R*_e> *P*_e,则认为粒子在单位时间步内没发 生碰撞。

2.2.4 粒子是否与壁面发生碰撞的判断

粒子与壁面碰撞主要有三种情形,即:与竖壁碰 撞、与斜壁碰撞和与圆柱壁面碰撞,这里只就与圆柱 碰撞的判断加以分析。设粒子经过单位时间步运动 后的末位置为(x,y,z),圆柱中心坐标为(x0,y0,z0),圆柱半径为r0,粒子与圆心间的距离可以表示 为 $S = \sqrt{(x - x_0)^2 + (y - y_0)^2}$,如果S大于r0,则 粒子未与圆柱碰撞;否则即认为发生碰撞。判断出粒 子与壁面碰撞后,要应用相应的汽一壁碰撞模型对 粒子进行处理。

2.2.5 网格宏观物理量调整

当完成一次对所有网格内粒子的跟踪以后,要 对各个网格的宏观物理量重新进行调整,作为下一时间步的初始条件,网格内的速度 $(u,v,w)_j$ 、温度 T_j 和浓度 n_j 可以表示为:

$$(u, v, w)_{j} = \frac{1}{N_{j}} \sum_{i=1}^{N_{j}} (u, v, w)_{i}; T_{j} = \frac{1}{N_{j}} \sum_{i=1}^{N_{j}} \frac{2}{3} [(u_{i}^{2})_{j}]$$

 $+v_i^2 + w_i^2) - (u_j^2 + v_j^2 + w_j^2)]; n_j = N_j/V_j$ (5) 其中, i, j 分别代表粒子和网格号; N_j, V_j 分别

为*j* 网格内的总粒子数和体积。

2.2.6 结果输出

决定是否进行结果输出。这里的定常稳定条件主要 是指各个网格内的宏观物理量不再发生明显变化、 并且在单位时间内进入和流出的粒子数相当。

3 算例和分析

本文中的算例是针对于 60 万千瓦机组的单壳 体凝汽器进行的。该凝汽器内置有组合式双低压加 热器(其位置设定为圆心距喉部出口 *H* = 2.23 m), 采用直撑方式。模拟中的计算条件如表2 所示(取原 形的一半)。

表 2 计算条件

图2 四分之一喉部流场矢量图

通过对整个流场的模拟,可以获得喉部四分之 一流动矢量图,见图 2。从该图可以看出,在喉部流 场中,上口的来流蒸汽进行减速的扩散流动,在低加 上部速度急剧降低,继之蒸汽形成两股高速绕流,并 且在低加的背风面脱离,使得低加的正下方形成低 密度区,从而产生压差阻力。另一方面,喉部两侧的 高速气流也加大了两侧壁处的摩擦阻力损失。从该 图还可以看出,由于低加的尺寸庞大,与整个喉部处 于同一个尺寸量级,因此,它的加入将影响整个喉部 的流动,尤其在低加的左右两侧处产生的高速气流, 将直接造成喉部出流的局部高速流,从而对下级的 冷却管束带来极大的威胁。由于目前对冷却管束防 振动设计是采用针对流场最大流速,并且留有相当 大裕量的统一设计方法,因此,这种局部的高速气流

通过判断整个流场是否达到定常的稳定状态,的其它管件,由于其尺寸与喉部和低加相比很小,

图 3 不同高度处的流场等值线图

是低加恢复流动的低速区域,不 加入低加则相反,高速区域出现 在流场中心,两侧壁处流速较小; 在斜壁下的回流区域,两者的流 动特性比较接近。上面两者的异 同点也说明,加入低加后,除低加 本身对流动的阻力外,也增大了 两侧壁处的摩擦阻力,因此总体 将增大喉部的流阻,关于这一点 本文不作过多分析。

结论

通过对喉部流场的建模和模 拟,获得如下结论:

(1)应用直接模拟蒙特卡罗 方法,对凝汽器喉部的流场计算 是可行的,并且可以揭示喉部流 动机理。

(2)凝汽器喉部的流场总体 上呈现一种逐渐减速的扩散流动 状态,在低压加热器两侧将出现 局部的高速气流。

(3)内置的低压加热器对喉部流场的均匀性造成很大的影响,喉部的出流处于一种极度的非均匀状态,这种流动状态将对下级的冷却管束带来极大的威胁。

总之,通过对凝汽器喉部流场的建模和求解,可 以帮助了解喉部的流动机理,为凝汽器喉部的设计 和安全运行提供一定的帮助和参考。

参考文献:

- [1] 张卓澄. 大型电站凝汽器[M]. 北京: 机械工业出版社, 1993.
- [2] 崔国民,蔡祖恢,李美玲,凝汽器冷却管克服汽流冲击振动的研究[J].中国电机工程学报,2001,21(5):74-78.
- [3] BERGHAUSEN A K, TAYLOR J C, HASSAN H A. Direct simulation of shock front radiation in air[J]. Journal of thermophysics and heat transfer, 1996, 10(3):413-418.
- [4] 崔国民,蔡祖恢,李美玲.直接模拟蒙特卡罗法对连续流体传热 和流动的模拟[J].工程热物理学报,2000,21(4):487-490.
- [5] 崔国民. 军用目标红外热像理论建模中的蒙特卡罗法和并行计 算[D]. 哈尔滨:哈尔滨工业大学, 1998.

(复编辑)

(A)设置低加的喉部出流等值线 u/m°s⁻¹ (B)不设置低加的喉部出流等值线 u/m°s⁻¹ 图 4 喉部是否设置低加的出流比较

因此只会带来局部的流场变化,对喉部整体流场的 影响远小于低加的影响。

为了更清晰地反映整个喉部流场在低加作用下的扩散流动机理,本文中给出了喉部不同高度(距喉部下口的长度)处的四分之一流场等值线图,见图 3。结合其中的A、B以及出口流动分布图4,可以看出,喉部的流动呈现一种由上至下的扩散减速现象, 到达喉部的下出口,流速达到最小。然而,在整个喉部中,流速分布却极不均匀:在斜壁下方和低加下部 产生一定的回流;低加上方速度迅速减小;在低加两 侧形成了局部的高速气流。这种局部高速流动将一 直延续到喉部的出口。当考虑汽轮机排汽的不均匀 性与喉部结构造成流动的不均匀的相互耦合作用时,流场将变得更复杂。

上面的分析表明,低压加热器对喉部流场的均 匀性有很大的影响,为了进一步证实这一结论,本文 对是否加入低加的喉部出流进行了比较计算,见图 4。从A、B两幅图的比较看出:加入低加后,喉部的 出流非均匀性增强,高速区域的相对速度数值更高; 加入低加前后的高速区域产生位置不同,加入低加 的高速区主要出现于两前后侧壁附近,中间的区域

「月99年20 客 China Academic Found Electronic Publishing House. All rights reserved. http://www.cnki.net

Through a simulation calculation of the air-tightness test of a steam turbine vacuum system it is concluded that the vacuum decrease rate is not a single-valued function of the air leakage into the condenser. The vacuum decrease rate can be affected more or less by a multitude of factors. Among these one may list: steam turbine load, cooling water flow rate, inlet temperature of cooling water and condenser tube material, etc. A detailed analysis is peformed of the effect of the above factors on the vacuum decrease rate. The conclusions reached can be of some reference value for a more accurate evaluation of the steam turbine vacuum system. **Key words**; steam turbine, condenser, air-tightness test of a vacuum system

凝汽器喉部蒸汽流动的三维数值模拟= Three-dimensional Numerical Simulation of the Steam Flow at a Condenser Throat Section [刊,汉] / CUI Guo-min, CAI Zu-hui, LI Mei-ling (Thermal Energy Engineering Research Institute under the Shanghai University of Science and Technology, Shanghai, China, Post Code: 200093) // Journal of Engineering for Thermal Energy & Power. = 2001, 16(5). = 520 ~ 522

With the help of a direct simulation Monte Carlo method incorporating a super-particle model and through a domain-decomposition and mathematical modeling of a steam turbine condenser throat a three-dimensional numerical simulation was conducted of the steam flow at the condenser throat of a specific structure. The simulation of the throat steam flow was undertaken with a focus on the analysis of its flow distribution. As a result, identified were the non-uniformity feature of the throat flow field and the underlying cause of the non-uniform flow field. **Key words:** condenser throat, numerical simulation, direct simulation Monte Carlo method

基于 MATLAB 的三轴燃气轮机动态仿真模型研究= Dynamic Simulation Modeling of a Three-shaft Gas Turbine Based on a Software MATLAB[刊,汉]/AO Chenyang, ZHANG Ning, CHEN Hua-qing (Naval Equipment Research Center, Beijing, China, Post Code: 100073)//Journal of Engineering for Thermal Energy & Power. — 2001, 16(5). — 523~526

Simulation technology represents an effective means for the study of gas turbine performance. With the help of a quasinonlinear method set up was the mathematical model of a three-shaft gas turbine. An object-oriented dynamic simulation platform was developed for the three-shaft gas turbine on the basis of a dynamic simulation software MATLAB. The results of the simulation show that the simulation model is correct and rational, featuring simplicity and ease of use. **Key words:** software MATLAB, three-shaft gas turbine, simulation model, object-oriented approach

某型两级涡轮流场数值模拟=Numerical Simulation of the Flow Field of a Two-stage Turbine [刊,汉] / WU Meng, WANG Song-tao, FENG Guo-tai, WANG Zhong-qi, et al (Energy Science and Engineering Institute under the Harbin Institute of Technology, Harbin, China, Post Code: 150001) // Journal of Engineering for Thermal Energy & Power. - 2001, 16(5). - 527 ~ 529

Through the use of a three-dimensional viscous flow calculation program a numerical simulation was performed of a twostage turbine. The program adopts a Godunov scheme of third-order accuracy with a turbulent flow model being of a B-L algebraic one. During the calculation the effect of a change in specific heat has been taken into consideration. An analysis of the calculation results indicates that there lacks a proper reflection of the matching of gas flow angles. This comes about because the gas turbine was designed and calculated through the use of a stream surface S_2 and single row viscous flow with losses being taken account of. As a result, there emerged a relatively great positive incidence angle in the second stage stator, leading to an ineffective role of adopting a rear loading profile and a failure to achieve an decrease in secondary flow loss. In view of this it is necessary to conduct in the aerodynamic design a calculation of the matching of multi-stage viscous flows. **Key words:** three-dimensional flow, numerical simulation, two-stage turbine

半干式脱硫系统的热量物质衡算模型— Calculation Model of Heat and Mass Balance for a Semi-dry Flue Gas Desulfurization System [刊,汉] / GAO, Ji-hui, WU Shao-hua, Qin Yu-kun (Energy Science and Engineering Institute