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CFB = An Investigation of the Impact of Fly-ash Reburning
on the Operation of an Anthracite-firing CFB (Circulating Fluidized Bed) Boiler| , | /HE Hongzhou (Insti-
tute of Energy and Power Engineering under the Jimei University, Xiamen, China, Post Code: 361021) [llournal of Fn-
gineering for Thermal Erergy & Power. — 2006, 21(1). —53~57

The reactivity of fly-ash carbon and that of other coals fed into a boiler was investigated and compared through experiments
with the help of a themobalance. A theoretical analysis was conducted of the impact of fly-ash reburning on the combustion
efficiency of a CFB (circulating fluidized bed) boiler. Moreover, by way of industrial tests investigated and measured was
the impact of the fly-ash quantity recycled for reburning on the following items: the operating temperature of a recycle-to-
boiler device, fly-ash particle distribution and its catbon content, boiler combustion efficiency and other operating parame-
ters. The results of the investigation indicate that the reactivity of fly-ash carbon of the CFB boiler buming Fujian anthracite
is higher than that of other corresponding coals fed into the boiler. In addition, other parameters, such as carbon content of
the reburnt fly ash, the ratio of the rebumnt fly ash amount to other wals fed into the boiler, have a major influence on the
ombustion efficiency of the hoiler. The use of fly-ash rebuming techmology will be conducive to reducing the carbon cont-
ent of the fly ash and the operating temperature of recycle-for rebuming device as well as enhancing the combustion efficien-
cy of the boiler. However, a relatively large amount of fly ash assigned for eburning will affect the stable operation of the
boiler. Key words: Fujian anthracite, circulating fluidized bed boiler, fly ash, rebuming

= Experimental Study of the Volt-ampere Characteristics of Fly Ash Resulting
from Coal Firing[ ., | /YUAN Yong-tao, QI Li-qiang (Institute of Environmental Science &Engineering under the
North China University of Electric Power, Baoding, China, Post Code: 071003) [ fournal of Engineering for Thermal
Enewy &Power. — 2006, 21(1). —58 ~61

The dielectric character of fly ash is a major factor having an impact on the efficiency of electrostatic precipitators. By
employing a self-developed direct-current high voltage test system the current leakage and specific resistance of the fly ash
of various kinds of wal being fired were measured and analyzed, and a series of volt-amper characteristic curves ob-
tained. It has been found that the relation among the following three items, i.e., the voltage applied to the ash layer
the current leakage through the ash layer and fly-ash specific resistance, does not alvays cnform to the classic Ohm’ s
law, namely, VI # constant. At the three segments of high, middle and low voltage the volt-ampere characteristic
curves of the fly ash have different configuration features. With an increase in voltage the specific resistance of the fly ash
assumes a descending tendency with the range of descending amount being within one order of magnitude (10" Q°an).
The cause leading to the occurrence of this phenomenon wnsists in the high-resistance feature of the fly ash. Mearwhile,
this is also closely related with the physical-chemical properties of the coal rank and fly ash. Key words: fly ash of coal
fired, dielectric properties specific resistance, electrostatic precipitator

= A Study of Two-phase Shock Waves with a Two-phase Flow Sonic
Velocity being Taken into Account [ , | [ZHAO Liang-ju, GAO Li-juan, YUAN Yue-xiang, et al (Institute of
Power Engineering under the Chongging University, Chongging, China, Post Code: 400044) /lfournal of Engineering for
Thermal Energy &Power. — 2006, 21(1). —62~ 65, 69

On the basis of a two-phase flow sonic velocity a gas-solid two-phase flow shock-wave model was set up, and calculations
and analyses were performed. When compared with the caleulation results of a shock wave model based on a single-phase
flow sonic velocity it has been found that in the case of a relatively large gas-phase volume the sonic velocity difference as
calculated by using the above two kinds of models is relatively small and the shock wave results for the two models are in
good agreement. When the gas phase volume is relatively small, the sonic velocity value calculated through the use of the

twoy phase sonic velocity, model is in better, correspondence with the actual value, resulting in more rational shock wave re-



