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=The Latest Research Findings Concerning Low- temperature Heat Ener-
gy-based Power Generation and its Development Trend] . ]/GU Wei, WENG Yi-wu, WENG Shi-lie (College of
Mechanical and Power Engineering under Shanghai Jiaotong University, Shanghai, China, Post Code: 200030), CAO
Guangyi (College of Electronic Information under Shanghai Jiaotong University, Shanghai, China, Post Code:
200030)/ /Journal of Engineering for Thermal Energy &Power. — 2007, 22(2). — 115~ 119

The utilization of low-temperature heat enemgy is of major significance because of its rich variety and huge quantity avail-
able worldwide. The current research results of low-temperature heat-energy power-generation technology are described a-
long with its development trend. The above-mentioned technology is mainly used for solar-energy cogeneration systems,
industrial waste heat-based power generation, geothermal power generation as well as power generation by utilizing
biomass energy and ocean temperature difference etc. Nowadays, the research on low-temperature heat energy power gen-
eration has been mainly focused on working medium thermophysical properties, environmental protection performance and
cycle optimization. The effective methods employed to raise the low-temperature and high-temperature heat energy power-
generation efficiency imvolve research on the following cycles: hybrid working medium cycle, Kalina cycle, recuperative
and ammonia-absorption type refrigeration cycle. In addition to the above, system optimized control based on finite time
themodynamics etc. was also studied. Key words:; low-temperature heat energy, organic matter Rankine cycle, thermal

power generation

PIV =PIV Measurements of the Impact of Rotation on the Flow Fields In
a Gas-cooled Turbine] , |/YUAN Feng, ZHU Xiao-cheng, DU Zhao-hui (College of M echanical and Power Engi-
neering under Shanghai Jiaotong University, Shanghai, China, Post Code: 200030)// Journal of Engineering for Thermal
Eney &Power. — 2007, 22(2).— 120 ~ 123, 128

Experimental measurements have been performed of the flow fields in an air-cooled tuibine by using PIV (Particle Image
Velocimeter ) speed measurement technology under both rotating and non-rotating conditions to study the impact of rotation
on the flow fields in the air-cooled turbine. In the meantime, the impact of different jet-flow air blowing ratios on the flow
fields in the turbine was also studied by changing the air blowing ratio (M= 1.5, 2). The test results show that there ex-
ists an evident wake zone near the downstream of the woling hole jet-flow. Under the rotating condition, the centrifugal
and Coriolis force present in the flow fields inside the turbine has changed the mixing-dilution flow field configuration of
the jet flow and main stream. Compared with the flow fields in a stationary turbine cascade, the impact of rotation on the
flow fields at the blade pressure side is obviously lamger than that at the blade suction side. Meanwhile, an increase in air
blowing ratio will expand the area of mixing-dilution flow field zone of the jet-flow and main stream and the jet-flow wake

zone ara. Key words: wtary air-cooled turbine, PIV (Particle Image Velocimeter) measurement, air blowing ratio,
flow field

= Establishment of a Dynamic Model for a Compressor and Analysis of
the Surge Process] . |/ WANG Wei-cai, WANG Yin-yan (College of Power and Energy Source Engineering under
Harbin Engineering University, Haibin, China, Post Code: 150001)// Joumal of Engineering for Thermal Energy &
Power. — 2007, 2(2). — 124 ~128

In environment SIMULINK, a dynamic mathematical model for a compressor has been established. To simulate the com-
pressor surge and rotating stall phenomenon, the characteristics chart of the wmpressor was extended to a negative flow
zone with the time delay of gas passing through the compressor being taken into consideration. The compressor surge pro-
cess has been simulated and the pressure signals of the compressor have undergone a fast Fourier transformation. The
compressor suige has also been tested. The simulation results show that the model can forecast the oscillation frequen cies
of pressure, flow rate and rotating speed as well as relevant amplitudes during the compressor surge. Stuctural parameters
such as the rotating inertia of the compressor system and the volume of the pressure stabilizing chamber etc. may influ-
ence the surge characteristics. The model displays good dynamic regulation characteristics and can be used for a compres-
sor control system, offering benefits of a wider-ranging practical applicability. Key words: compressor; dynamic model,
surge., fast Fourler transformation



