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can reach 0.74 V. When the current density is 45 mA/cm’s the output voltage can reach 0.65V and the cell can main-
tain a continuous and stable operation for 20 hours. A pyrolysis and direct carbon fuel-cell combined system is proposed
and with CoH» sewing as an example, an analysis was performed of the combined system having a maximal power genera-
tion efficiency of 76.5%. This indicates that the system in question will have a brilliant application prospect in future
centralized power plants. Key words: direct carbon fuel cell, graphite, fusible hydroxide, open-circuit voltage

= Numerical Calculation of a Honeycomb-shaped Catalyst Denitration Process
[ - ]/FAN Hong-mei, ZHONG Zhao-ping, JIN Bao-sheng, et al (College of Energy Source and Environment under the
Southeast University, Nanjing, China, Post Code: 210096)//Journal of Engineering for Themal Energy & Power. —
2007, 22(4). —450 ~456

An analytic study was conducted of the convection, mass transfer and chemical reaction process occurring inside a honey-
comb-shaped catalyst and a control equation established for the wall surface areas. Boundaty conditions were written out on
the basis of the geometrical symmetry and diffusion balance with self-adaptive meshes being generated. A discretization of
the control equation was performed by using a finite difference method to seek a solution of NO concentration distribution
on wall surfaces. Established was a cntwl equation for the mner areas in the honeycomb-shaped catalyst passage and
written out were the boundary conditions on the basis of the geometrical synmetry and diffusion balance.A discretization
of the control equation was conducted by using an alternating-direction implicit (ADI) algorithm. Finally, simultaneous e-
quations were set up and a solution was sought.Obtained was an optimum NH3/NO-ratio-based formula for a given tem-
perature, air-flow velocity and certain denitration efficiency as well as under the condition of an acceptable ammonia leak-
age rate. A specific-case calculation shows that SCR (selective catalytic reduction) reaction only occurs in a thin layer
close to the catalyst wall surface and the others are all dead zones. From the concentration distribution of the NH3 and NO
in a calalyst single hole along the axial direction, it can be shown that the concentration of NH3 in various sections drops
quicker than the concentration of NO, a result mainly caused by NH3 being oxidized at a high temperature. From the opti-
mum NH3/NO ratio at a certain NO admission concentration, temperature and air-flow velocity, one can wnclude that the
most suitable NH3 gas—feeding flow rate is not equimolar with the amount of NO. Key words: honeycomb-shaped catalyst,

denitration, numerical calculation

= A Study of Experimental and Reaction Models for the Spray
Towers of Wet-method Flue-gas Desulfuration] ., |/ZHAO Jian-zhi, JING Bao-sheng, ZHONG Zhao-ping (Educa-
tion Ministry Key Laboratory on Clean Coal Power Generation and Combustion Technology under the Southeast University,
Nanjing, China, Post Code: 210096), SUN Ke-qin (Suyuan Environment Protection Engineering Stock Co. Litd ., Nanjing,
China, Post Code: 210024)// Journal of Engineering for Themal Eney &Power. —2007, 22(4). —457 ~462

Established was a spray-tower test stand for limestone/ gypsum wet-method flue-gas desulfuration. An experimental study
was perfomed of the mechanism governing the impact of important operating parameters on the desulfuration efficiency of
a spray tower. The test results show that it is possible to raise the desulfuration efficiency by employing the following mea-
sures: raising liquid-gas ratio and slurty pH value, lowering the flue gas temperature and its flow speed, reducing SO; con-
centration of the inlet flue gas and performing a forced oxidation. The spray slurry was divided into two existing forms;
namely, spray liquid droplets and tower-wall liquid film. Models for them were respectively set up. The desulfuration pro-
cess of the spray liquid droplets was calculated by using a Gerbec liquid-droplet desulfuration model. The flow of tower-
wall liquid film was divided into two states, namely, laminar flow and undulatory laminar flow. A new reaction model for
calculating desulfuration in the spray tower has been developed. The calculation esults obtained by using the model show
that relative to the Gerbec liquid-droplet model, the calculation results of the reaction model under discussion are in better
agreement with the experimental data. Key words: flue gas desulfuration, spray tower, desulfuration efficiency, tower-wall
liquid film, reaction model



