文章编号:1001-2060(2007)06-0642-05

高浓度 CO₂ 下 CaCO₃ 循环煅烧试验与模拟

李振山,房 凡,蔡宁生

(清华大学热能工程系热科学与动力工程教育部重点实验室,北京100084)

摘 要:建立了高浓度 CO₂ 气氛下 CaCO₃ 循环煅烧过程数学 模型,利用钙基吸收剂多次循环煅烧试验对模型进行了验 证,在此基础上分析了 CO₂ 浓度、吸收剂种类、粒径和循环次 数等参数对 CaCO₃ 煅烧的影响。结果表明:CaCO₃ 分解温度 随气相中 CO₂ 含量的增加而增大;在高浓度 CO₂下,随循环 反应次数的增加,吸收剂循环反应活性下降,使得所生成的 CaCO₃ 质量也随循环次数的增加而减少,致使 CaCO₃ 煅烧完 全所需时间会随循环反应次数的增加而减少。

关 键 词: CO₂ 分离; CaCO₃ 分解; 循环反应/ 煅烧; 模型 中图分类号: TQ530. 2 文献标识码: A

引 言

CaO 与 CO₂的碳酸盐化反应及其逆反应可以应 用于增加碳与蒸汽气化反应过程、吸收烟气中 CO₂ 以减少温室气体排放、吸收增强式天然气蒸汽重整 制氢、零排放煤制氢以及能源存储系统和化学热泵 系统^[1~3]。

利用 CaO 吸收 CO₂ 主要过程如图 1 所示。混合 气中的 CO₂ 和颗粒中 CaO 进行气固反应,生成 Ca-CO₃,同时放出大量热量。CaO 在过程中一般都是循 环使用的,所以反应一段时间后,对生成的 CaCO₃ 加 热使其分解生成 CaO 和高浓度的 CO₂,然后再利用 生成的 CaO 来再次吸收 CO₂,如此循环下去。

CaO 循环反应活性^[6]、CaO 与 CO₂ 的反应动力 学特性^[7]、高效吸收剂筛选与合成^[8~10] 对该过程有 较大的影响并得到了一定程度的研究。同时 CaCO₃ 在高浓度 CO₂ 下循环煅烧分解相关特性对于过程的 分析和后续的反应器设计都十分关键,许多研究者 对 CaCO₃ 在较低浓度(<20%)CO₂ 下煅烧分解过程 进行了模拟和实验研究,但有关 CaCO₃ 在高浓度 (100%)CO₂ 下煅烧分解特性尤其是循环煅烧过程 的研究十分有限。本文在钙基吸收剂多次循环煅烧 试验基础上,建立了 CaCO₃ 循环煅烧过程数学模型, 主要考察 CO₂ 浓度、吸收剂种类、粒径和循环次数等 对 CaCO₃ 煅烧的影响,为后续的研究和应用提供参考。

图1 CaO 吸收 CO2/CaCO3 煅烧 再生过程

1 试验与模型

1.1 CaCO3 循环煅烧过程数学模型

第 N 次循环中, CaCO₃ 循环煅烧过程分解率 dX_N 随时间 dt 的变化为:

$$\frac{\frac{\mathrm{d}X_{N}}{\mathrm{d}t} = \frac{3M_{\mathrm{GdO}}}{r_{0,N}\rho_{\mathrm{GdO}}} \times \frac{(P_{\mathrm{e},\mathrm{GO}} - P_{0,\mathrm{GO}})^{n} (1 - X_{N})^{\frac{2}{3}}}{\frac{P_{\mathrm{e},\mathrm{CO}}^{n}}{k} + \frac{RT(1 - X_{N})^{\frac{1}{3}}r_{0,N}[1 - (1 - X_{N})^{\frac{1}{3}}]}{D_{\mathrm{e}}} + \frac{RT(1 - X_{N})^{\frac{2}{3}}}{h_{\mathrm{d},N}}$$
(1)

式中: M_{CaO} — CaO 分子量, kg/mol; $r_{0,N}$ — 第 N 次循 环中初始煅烧时 CaCO3 颗粒的等效半径, m; ρ_{CaO} — CaO 密度, kg/m³; $P_{0,00}$ — CO2 平衡压力, Pa.

$$P_{e \, CO_2} = 1.844 \times 10^{17} \exp\left(-\frac{19680}{T}\right) \tag{2}$$

 P_{0,CO_2} 一气相中 CO_2 分压力, Pa。

化学反应速率常数为:
$$k = k_0^{\circ} \exp(-E/R_g T)$$
 (3)

收稿日期: 2006-12-12; 修订日期: 2007-02-09

基金项目:国家重点基础研究发展规划(973)基金资助项目(2006CB705807)

作者简介理季報中的 275m 是 是这层康恶人。请指本学助理研究员。博士shing House. All rights reserved. http://www.cnki.net

$$D_e = 0.00881 T^{1/2} S^{-1} \varepsilon^2$$
 (4)
颗粒外扩散传质系数为:

$$h_{\rm d, N} = \frac{D \circ Sh}{d_{\rm p}} = \frac{D}{d_{\rm p}} (2.0 + 0.6 Re^{\frac{1}{2}} Sc^{\frac{1}{3}})$$
 (5)

比表面积和孔隙率随煅烧时间的变化为:

$$\left(\frac{S_0-S}{S_0}\right)^{\gamma} = k_s t \tag{6}$$

$$\varepsilon_0 - \varepsilon = k_{\rm p} \ln \left(t / t_{\rm m} \right) \tag{7}$$

烧结系数分别为:

笙动扩数系数为

 $k_s = \exp(18.5 \pm 0.558 \ln P_{0 CO_2} - 3000/T)/3600$

$$\gamma = 44.1^{\circ} (0.8 \ln P_{0.00_2} - 1) \exp(-4140/T) \quad (9)$$

$$k_p = 0.06067 - 1.657^{\circ} 10^{-4} \circ T + 2.15^{\circ} 10^{-7} \circ T^2$$

(10)

(8)

在采用模型计算时, CaCO₃ 煅烧过程采用的是 缩核模型, 计算时需要知道 CaCO₃ 颗粒半径, 而煅烧 开始时的样品中既有 CaCO₃, 又有 CaO, 因此需要建 立确定 CaCO₃ 颗粒的半径的方法。CaO 的转化率计 算公式为:

$$X_{\text{CaO, }N} = \frac{R_0 \cos^3 - R_{\text{CaO, }N}^3}{R_0 \cos^3}$$
(11)

其中: *R*_{0 CaO} 一CaO 颗粒初始半径; *R*_{CaO, N}一未反应的CaO 半径。新生成的 CaCO3 的体积为:

$$V_{\text{CaCO}_{3}, N} = \frac{4}{3} \pi \frac{V_{\text{CaCO}_{3}}^{M}}{V_{\text{CaO}}^{M}} (R_{0 \text{ CaO}}^{3} - R_{\text{CaO}, N}^{3})$$
$$= \frac{4}{3} \pi \frac{V_{\text{CaCO}_{3}}^{M}}{V_{\text{CaO}}^{M}} X_{\text{CaO}, N} \circ R_{0 \text{ CaO}}^{3}$$
(12)

将新生成的 CaCO₃ 等效为一个球,则可以求出 生成的 CaCO₃ 的半径:

$$r_{0 N} = R_{0 Ca0} \left(\frac{V_{CaC0_{3}}^{M}}{V_{Ca0}^{M}} X_{Ca0 N} \right)^{V3}$$
(13)

在 CaO 与 CO₂ 的循环反应过程中,在有限的时 间内, CaO 几乎总是不能完全转化为 CaCO₃,也就是 说.总是有一部分未反应的 CaO 存在于样品中。每 一次循环煅烧后的 CaO 由两部分组成,一部分为 CaCO₃ 分解所生成的 CaO;另一部分就是未反应的 CaO。每次循环过程中未反应的 CaO 的比表面积为 ScaO₁,由 CaCO₃ 煅烧所形成的那部分 CaO 所具有的 比表面积为 ScaO₂, CaO 整体比表面积为:

$$S_{*N} = \frac{S_{Ca01} \circ R_{Ca0, N}^3 + S_{Ca02} \circ (R_{0, Ca0}^3 - R_{Ca0, N}^3)}{R_{0, Ca0}^3}$$

与此相类似, CaO 整体孔隙率为:

$$\varepsilon_{\rm b, N} = \varepsilon_{\rm CaO1} (1 - X_{\rm CaO, N}) + \varepsilon_{\rm CaO2} X_{\rm CaO, N}$$
(15)

1.2 实验系统

使用 热重分析 仪 TA Instrument 1200 进行 CaO 与 CO₂ 反应实验, 当温度达到设定温度并稳定后, 开始通入含有 CO₂ 的气体进行反应, 恒温反应时间为 30 min; 然后 TGA 升温, 待温度稳定在设定的煅烧温 度水平时, 恒温 5 min; 然后 TGA 降温, 待温度稳定 在设定的反应温度水平时, 恒温 30 min, 至此, 完成 一个循环。样品采用分析纯 CaO、白云石和 CaO/ Ca₁₂Al₁₄O₃₃(75:25), 粒径为 20~60 ^µm。

第 N 次循环煅烧过程中 CaCO3 分解率计算式为:

$$X_{N} = \frac{m_{N,0} - m_{N,t}}{m_{N,0} - m_{0}}$$
(16)

式中: *m_N*₀一第 *N* 次煅烧开始时吸收剂质量; *m_N*_t一第 *N* 次煅烧*t* 时刻吸收剂质量; *m*₀ 为煅烧完 成后吸收剂质量。

2 结果与分析

2.1 温度和 CO₂浓度对 CaCO₃ 煅烧过程影响

不同 CO₂ 浓度下 CaCO₃ 煅烧分解率随时间的变 化曲线如图 2 所示,图中还给出了煅烧温度随时间 的变化情况。吸收剂为 CaO/Ca₁₂Al₁₄O₃₃ (75: 25),试 验时先在 650 [℃]下通入 20% CO₂ 反应 30 min,然后 进行两种条件下的煅烧,一是停止通入 CO₂,稳定 5 min 后将 TGA 升温;二是继续通入 20% CO₂,将 TGA 升温。两种情况下的升温速率相同。图 2 同时给出 了模型计算结果,模型计算时所用的参数值如表 1 所示。

图 2 CO2浓度和煅烧温度对CaCO3 煅烧影响

 $= S_{\text{Ca01}} (1 - X_{\text{Ca0.}N}) + S_{\text{Ca02}} X_{\text{Ca0.}N} (14)$?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表1 模型计算所用参数值

	<i>r</i> _{0,1} /μm	S_0 /m ² °g ⁻¹	ε ₀	$k_0(10^5)$	E kJ°mol ⁻¹	п
CaO	22	20	0.54	3. 00	154	1.83
白云石	22	22	0.54	3. 81	158	1.8
CaO/ Ca ₁₂ Al ₁₄ O ₃₃	22	25	0.54	2. 21	150	1.86

从图 2 可以看出,在同一温升速率下,CaCO₃ 煅 烧过程受 CO₂ 浓度影响较大,随 CO₂ 浓度增大,CaCO₃ 开始快速分解的时间向后推迟。从式(1)可以看出, CaCO₃ 分解过程受气相中 CO₂ 分压力 $P_{0 CO_2}$ 和平衡压 力 $P_{0 CO_2}$ 影响较大。温度增加时, $P_{0 CO_2}$ 增加,如图 3 所示,使得($P_{0 CO_2} - P_{0 CO_2}$)的差值增大,CaCO₃ 的分 解率增加。当气相 CO₂ 含量增大时,CO₂ 分压力 $P_{0 CO_2}$ 增加,使得($P_{0 CO_2} - P_{0 CO_2}$)的差值减小,在同样 的升温速率下,CaCO₃ 开始分解的时间推迟。

图 3 CO2 平衡压力 Peco。随温度变化特性

从图 2 和图 3 中可以看出,只有当煅烧温度大于 一定值后, CaCO₃ 才开始分解,这是因为当温度较低 时, P_{α,Ω_2} 小于 P_{0,CO_2} ,此时 CaCO₃ 不发生分解反应,只 有当($P_{\alpha,\Omega_2} - P_{0,CO_2}$)的差值大于零时,CaCO₃ 的分解 反应开始进行。从图 2 中可以看出,当 CO₂ 含量为 20%条件下,在同样的升温速率下,CaCO₃ 开始分解的 时间向后延迟,所对应的分解温度相应增大。

2.2 高浓度 CO2 下 CaCO3 循环煅烧特性

前期的实验结果表明,与其它钙基吸收剂相比, CaO/Ca12Al14O33(75:25)具有较高的循环反应活性和 循环反应稳定性。该吸收剂不同循环次数下 CaCO3 煅烧分解率随时间的变化关系模拟结果与实验数据 的对比如图 4 所示,反应温度为 700 $^{\circ}$, CO₂ 含量为 100%,反应 30 min 后将 TGA 升温对吸收剂进行煅烧,实验过程中煅烧阶段温升曲线如图 4 所示,不同 循环次数下 CaO 转化率及相对应的等效 CaCO₃ 半 径值如表 2 所示。

从图 4 可以看出,模型预测结果与实验结果吻 合得较好。同时,从表 2 可以看出,随循环反应次数 的增加,吸收剂循环反应活性下降,导致 CaO 转化 率随循环次数的增加而下降,意味着所生成的 Ca-CO₃ 质量也随循环次数的增加而减少。从式(13)可 知,所生成的 CaCO₃ 等效半径也会逐渐减小,致使 CaCO₃ 煅烧完全所需时间会随循环反应次数的增加 而减少,如图 4 所示。从模拟结果与实验数据的对 比中可以看出,所建立的模型能够较好的描述高浓 度 CO₂ 下 CaCO₃ 循环煅烧过程。

表 2 CaO/ Ca12Al14O33吸收剂循环煅烧过程参数值

N	$R_{0, \text{ CaO}}/\mu_{\text{m}}$	$X_{\text{CaO}, N}$	$r_{0,N}/\mu_{\rm m}$
1	16	0. 88	22
15	16	0.67	20
30	16	0. 52	18.4
45	16	0. 42	17.2
56	16	0. 37	16.5

图 4 不同循环次数下 CaCO3 煅烧分解率(100% CO2)

2.3 比表面积和孔隙率预测

因为在每次循环的煅烧过程中, CaO 颗粒要发 生烧结, 致使 CaO 颗粒孔隙率和比表面积发生变 化, 而二者的这些变化会对 CaO 后续吸收 CO₂ 特性 产生较大的影响。如图 5 和图 6 所示, CaO/ Cai2 Ali4 O₃₃吸收剂比表面积和孔隙率随着循环次数的增加

煅烧分解率随时间的变化关系模拟结果与实验数据。而减小。当煅烧温度大于960 ℃、CO2 浓度为100% http://www.cnki.net

时, CaO 烧结非常严重, 所以 CaO 的比表面积较低。 同时, 随着循环次数的增加, 没有参加反应的 CaO 所占的份额也越来越大, 即反应阶段所生成的 Ca-CO3 越来越少。虽然由 CaCO3 煅烧所新产生的这部 分 CaO 具有一定的比表面积, 但新产生的这部分 CaO 仅仅是全部吸收剂中的一部分, 另外一部分是 在每次的碳酸化反应过程中没有参加反应的 CaO。 吸收剂总的比表面由新产生的 CaO 所具有的比表 面积和那部分没有参与反应的 CaO 所具有的比表 面积构成。后者比前者的比表面积要低很多, 同时, 随着循环次数的增加, 没有参加反应的 CaO 所占的 份额也越来越大, 导致颗粒总的比表面积和孔隙率 会随着循环次数的增加而变小。

图5 不同循环次数下 CaO/Ca 12Al14O33比表面积变化

不同种类吸收剂煅烧过程 CaCO₃ 分解率随时间 的变化特性如图 7 所示,图中同时还给出了模型计 算结果,以便和试验结果进行对比。从图 7 中可以 看出,不同吸收剂中 CaCO₃ 的煅烧分解特性略有差 别,这些差别主要是由分解过程中 *k*₀、*E*、*n* 不同而 引起的,不同吸收剂所对应的 *k*₀、*E*、*n* 值如表 1 所 示。

颗粒粒 径对 CaCO₃ 煅烧分解 率影响的 试验结 果^[1] 及计算结果的对比如图 8 所示。从图中可见, 粒径增大, CaCO₃ 完全分解所需要的时间加长,主要 是因为 CaCO₃ 分解率与颗粒粒径成反比,如式(1)所 示。同时颗粒粒径增大,还会增大颗粒内传质阻力, 所以 CaCO₃ 完全分解所需时间增长。

图7 吸收剂种类对CaCO3分解率的影响

图 8 颗粒粒径对CaCO3分解率的影响

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

3 结 论

(1)建立了高浓度 CO₂ 下 CaCO₃ 循环煅烧过程 数学模型,利用钙基吸收剂多次循环煅烧试验数据 对模型进行了验证,表明所建模型能够较好地预测 CaCO₃ 循环煅烧特性;

(2) CaCO3 分解过程受气相中 CO2 分压力和平 衡压力影响较大。温度增加时, CO2 平衡压力增加, 使得 ($P_{a, O_2} = P_{0, O_2}$)的差值增大,使得 CaCO3 的分 解速率增加。气相 CO2 分压力增加,使得 ($P_{a, CO_2} = P_{0, CO_2}$)的差值减小,在同样的升温速率下, CaCO3 开 始分解地时间推迟;

(3) 吸收剂中 CaO 转化率随循环次数的增加而 下降,所生成的 CaCO3 质量也随循环次数的增加而 减少,使得所生成的 CaCO3 等效半径也会逐渐减小, 致使 CaCO3 煅烧完全所需时间会随循环反应次数的 增加而减少;

(4) 不同吸收剂中 CaCO3 的煅烧分解特性不同,粒径增大, CaCO3 完全分解所需要的时间加长。

参考文献:

HAN C, HARRISON D P. Simultaneous shift and carbon dioxide separation for the direct production of hydrogen[J]. Chem Eng Sci, 1994, 49 (24): 5875-5883.

- [2] BAIASUBRAMANIAN B IOPEZ A, KAYTAKOGLU S, et al. Hydrogen from methane in a single-step process[J], Chem Eng Sci, 1999, 54 (15/16): 3543°3552
- [3] YUKITAKA KATO, KEIKO ANDO, YOSHIO YOSHIO YOSHIZAWA.
 Study on a regenerative fuel reformer for a zero-emission vehicle system
 [J]. J Chem Eng Tapan, 2003, 36(7): 860-866.
- [4] LIN SHI YING, YOSHIZO SUZUKI, HIROYUKI HATANO, et al. Devebping an innovative method. Hypr-ring to produce hydro-gen from hydrocarbons[J]. Energy Conversion and Management. 2002, 43 (9– 12):1283–1290
- [5] BARKER R. The reversibility of reaction $CaCO_3 = CaO + CO_2$ [J]. J Appl Chem Biotechnol, 1973, 23: 733–742.
- [6] 李振山,蔡宁生,黄煜煜,等. CaO 循环吸收 CO₂ 的实验研究 [J]. 燃烧科学与技术, 2005, 11(4): 379-383.
- [7] 李振山,蔡宁生,赵旭东,等. CaO 与 CO₂ 循环 反应动 力学特性 [J]. 燃烧科学与技术, 2006 12(6): 481-485.
- [8] LIZS, CAINS, HUANGYY, et al. Synthesis experimental studies, and analysis of a new calcium-based carbon dioxide sorben[J]. Energy Fuels, 2005, 19(4): 1447-1452.
- [9] LI Z S, CAI N S, HUANG Y Y. Effect of preparation temperature on cyclic CO₂ capture and multiple carbonation-calcination cycles for a new ca-based CO₂ sorbent[J]. Ind Eng Chem Res. 2006, 45(6): 1911 -1917.
- [10] 李振山,蔡宁生,黄煜煜,等.钙基二氧化碳吸收剂循环反应特
 性[J].工程热物理学报,2006 27(增刊 2):215-218.
- [11] GARCIA IA BIANO F, A BAD A, DIEGO L F, et al. Calcination of calcium—based sorbents at pressure in a broad range of CO₂ concentrations[J]. Chem Eng Sci, 2002 57(13): 2381–2393.

(编辑 滨)

新技术

汽轮机阀门的液体金属密封

据《Элект Інческие станции》2007 年 1 月 号报道, 在阀门内阀杆和轴 衬之间的间隙 是动力汽轮机内蒸汽和 热量的 一个十分大的损失源。在超临界参数(24 MPa 和 540/540 ℃)的汽轮机内, 它们损失特别大, 这些损失 随蒸汽参数的增加而 增加。

作为密封填充物,新的填料压盖包含易熔金属,在汽轮机启动前暖机时易熔金属熔化并充满毛发状的间隙,不允许蒸汽漏入大气。

与迷宫式密封相比,充填有液体金属的BFV(高气密的密封)的尺寸只是前者的几分之一,这就在设计 新阀门时可以减小阀箱的尺寸并减少金属用量。

所以,在汽轮机阀门内大规模地应用高气密的密封将会带来相当大的经济效益,显著简化汽轮机内和电站的管道系统并便于汽轮机的维护。

固体蓄热式电锅炉蓄热模拟及实验=Heat-storage Simulation and Experiments of a Solid Heat-storage Type Electric Boiler [刊,汉]/SU Jun-lin, HU Yue-hong (Thermal Energy Engineering Department, Jilin University, Changchun, China, Post Code: 130022), ZHANG Ya-ren (Jilin Provincial Energy Source Research Institute, Changchun, China, Post Code: 130012)//Journal of Engineering for Thermal Energy & Power. — 2007, 22(6). —638~641

Studied was a new type of energy storage device-solid heat-storage type electrically-heated boiler, which uses valley-load electric power to heat electrically heated wires running through the hole passage of refractory bricks of a heat storage body. The heat storage body absorbs the heat released from the electrically heated wires and stores it temporarily. Then, they release the heat in question through a secondary heat exchange for use by users when necessary. By using software ANSYS, a three-dimensional numerical simulation was conducted of the temperature field in the heat storage body with the temperature distribution at different times being obtained. To verify the accuracy of software ANSYS in simulating the temperature distribution, a measurement test was performed in a range of temperatures from 260 °C to 900 °C. The results show that in the above temperature range, the error is less than 10%. During the valley-load electric power period lasting for 7 hours, the temperature of heat storage can reach 900 °C. The experimental sample machine proves that the boiler can have a thermal efficiency up to 97.4%. The research results show that the solid heat-storage type electrically heated boiler as well as the absence of atmospheric pollution etc. **Key words**; solid heat storage, electrically-heated boiler, valley-load electric power, experimental study, numerical simulation

高浓度 CO₂下 CaCO₃循环煅烧试验与模拟= CaCO₃ Circulating Calcination Tests and its Simulation at a High Concentration of CO₂[刊,汉]/LI Zhen-shan, FANG fan, CAI Ning-sheng (Education Ministry Key Laboratory on Thermal Sciences and Power Engineering, Thermal Energy Engineering Department, Tsinghua University, Beijing, China, Post Code: 100084)// Journal of Engineering for Thermal Energy & Power. — 2007, 22(6). — 642 ~ 646

A mathematic model has been established for CaCO₃ circulating calcination process at an atmosphere of high CO₂ concentration and verified in multiple circulating calcination experiments by utilizing calcium-based absorbents. On this basis, the influence of a variety of parameters, such as CO₂ concentration, absorbent category, particle diameter and circulating frequency etc. on CaCO₃ calcination has been analyzed. The results show that the decomposition temperature of CaCO₃ will increase with an increase of CO₂ content in the gas phase. Under a high concentration of CO₂, the circulating reaction activity of the absorbents will degrade and the quality of CaCO₃ produced will become lower with an increase in the number of times of the circulating reaction has increased. **Key words**: CO_2 separation, CaCO₃ decomposition, circulating reaction, calcination, model

温度对超细煤焦再燃还原 NO 效率的影响=Effect of Temperature on the Efficiency of NO Reduction Through a Reburning of Superfine Coal Coke[刊,汉]/ZHAO LI, YAN Wei-ping, LIU Zhong(College of Environmental Science and Engineering, North China Electric Power University, Baoding, China, Post Code: 071003), DAI Wen-nan (Environment Engineering Evaluation Center, National Environmental Protection Administrative Bureau, Beijing, China, Post Code: 100012)// Journal of Engineering for Thermal Energy & Power. - 2007, 22(6). -647~650

With superfine pulverized coal-prepared coke serving as a reburning fuel and N₂, O₂, CO₂ and NO being prepared to act as simulation flue gases, a study was performed of the effect of temperature on the efficiency to reduce NO emissions through reburning. The results show that within the range of experimental temperatures, the efficiency to reduce NO through reburning will increase with an increase of the temperature in the reburning zone. Chemical dynamics represents a major factor controlling the NO reduction reaction speed through a reburning of superfine pulverized coal. To raise the temperature in the reburning zone can properly shorten the residence time, but such a residence duration should not be shorter than 0. 6 s, otherwise, the NO reduction efficiency will dramatically decrease and, meanwhile, the burn-out rate will also diminish. During the reburning of the pulverized coal, NO reduction through the reburning of coal coke plays a dominant role. **Key words**, superfine coal coke, reburning. NO, temperature