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=A Study of the Mineral Distribution and Combustion Charac-
teristics of Pulverized Coal of Different Densities] , ]/CAI Youmin, YAO Hong, LIU Xiao-wei, et al (National
Key Laboratory on Coal Combustion, Huazhong University of Science and Technology, Wuhan, China, Post Code:
430074)// Joumal of Engineering for Themal Energy & Power. — 2007, 22(6).— 651 ~ 655

Through the use of a heavy-liquid floatation, a kind of bituminous wal can be divided into three density sections, i. e. high
2.0 g/em’), medium (1.4~2.0 g/cem’) and low <Z1.4 g/an’). By utilizing SEM, XRD and XRF etc. analytic
methods, a study was conducted of mineral distribution, mineral composition, particle diameter; ash constituents, industrial
and elementary analysis and cwmbustion characteristics of raw coal of different densities. The results show that with an in-
crease in dersity of the raw coal, the industrial analysis indicates an increase of ash content in coal, a decrease of volatile
and fixed carbon content.The elementary analysis also indicates a decrease of organic carbon, element hydrogen and nitro-
gen ontent. Low-density pulverized coal contains a small amount of internal mineral matter while medium and high-densi-
ty pulverized coal contain an abundance of mineral matter. What differs is that the fomer contains a great deal of internal
mineral matter, but in the latter a large quantity of external mineral matter predominates. The particle diameter distribution
of the raw coal of three densities is almost identical. However, the particle diameter distribution of the mineral matter con-
tained in the raw coal in question is very different. With an increase of the density of raw coal, the particle diameter of
mineral matter contained in it will increase significantly. The themogravimetric curves of the raw coal of three densities
indicate that the low-density pulverized coal assumes a most intense combustion and the weight loss and heat release be-

come ever weaker with an increase of density. Key words: coal, densitys mineral matter, granularity, thermogravimetry

= Numerical Simulation of Heat Transfer and Resistance
Characteristics of the Restricted Outgoing Flow in a Spiral Channel] , |/LEI Yonggang, CHU Pan, HE Ya-

ling, et al(National Key Laboratory on Multi-phase Flow in Power Engineering, Xi’ an Jiaotong University, Xi’ an, China,
Post Code: 710049)// Journal of Engineering for Thermal Energy & Power. — 2007, 22(6).—656 ~ 660

Through a three-dimensional numerical simulation, a study was conducted of the heat transfer and flow characteristics of
restricted outgoing flows inside a spiral channel with different spiral angles (157, 20°, 30°, 40", 45, 50°, 60 ). The authors
have proposed several optimization modes applicable in a certain range of Reynolds Number (0. 8X 10*<CRe<<6< 10"),
thereby improving the flow conditions and heat transfer at the shell side of a wbe-and-shell type heat exchanger.The re-
sults of the study show that the restricted outgoing flow in the spiral channel can fom an ideal plunger flow with the veloc-
ity distribution inside the channel being uniform, thus effectively minimizing and eliminating flow dead areas. Compared
with a “Z”-shaped restricted outgoing flow formed by vertical baffles, the above-mentioned flow inside the spiral chamel
can boast a relatively high heat transfer coefficient and enjoy an obvious energy-saving effectiveness at a same pressure-
dwop gradient. In the range of Reynolds number under investigation, the flow in question has a comprehensive pefomance
of optimum heat transfer and resistance when the spiral angle @ is aound 45°. The research findings can well provide a
theoretical basis for the design of a high-efficiency and low-resistance structure at the shell side of a shell-and-tube type
heat exchanger and for its further optimization. Key words: shell-and-tube type heat exchanger, restricted outgoing flow,

spiral angle, numerical simulation, pressure dop

= Statistical Analysis and Application of Energy-consumption
Parameters of Large-sized Thermal Power Plants] , |/LI Li-ping, NIU Yuguang (Automation College, North
China Electric Power University, Baoding, China, Post Code: 071003), ZHANG Chun-fa, WANG Hui-jie (College of Ener-
gy Source and Power, North China Electric Power University, Baoding, China, Post Code: 071003)// Journal of Engineering
for Thermal Energy & Power. — 2007, 22(6). —661 ~ 664

Based on the long term operating data and on-line performance calculation ones of a power plant, a statistico-analytical
study was performed of the actual performance characteristics of the plant. Proposed was a criterion for discriminating the
plant performance steady state compatible with the process themodynamic characteristics and thermal test standards.

Through a datistical analysis of the sified out data, which meet the steady-state, criterion, obtained respectively was the un-



