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= Blade Cooling Technology of Heavy-duty Gas Turbines=| , |/ZHANG Xiao-
wels ZHU Hui-ren (College of Power and Energy Source, Northwestem Polytechnical University, Xi” an, China, Post Code:
710072)/ /Journal of Engineering for Thermal Energy & Power. —2008, 23(1).—1~6

In ecent years heavy-duty gas turbine performance has undergone a continuous improvement. To further reduce the con-
sumption of effective gases, the authors have proposed a stean-mist two-phase flow cooling scheme, under which tuibine
blades are cooled by mist-and-steam dual working media instead of air.The scheme in question has become the focus of
study with each passing day . A great deal of research shows that the steam-mist cooling method enjoys a variety of merits,
such as quick cooling, high cooling efficiency, small flow resistance and simple configuration etc., which will play a major
role in the cooling of turbine blades of next-generation high performance gas turbines. A numerical simulation of the cool-
ing process in an impingement gasfilm structure has identified a significantly higher average cooling efficiency with the
low temperature zone being extended remarkably. Key words: gas turbine blade, blade cooling technology, steam cooling,

steam mist cooling

= A Study of the Influence of Inlet Pre-swirl on Flow and Heat
Transfer Characteristics of a Labyrinth Seall ., ]/YAN Xin, LI Jun, FENG Zhen-ping (Turbomachinery Research
Institute, Xi” an Jiaotong University, Xi’ an, China, Post Code: 710049)// Journal of Engineering for Themal Energy &
Power. —2008, 23(1). —7 ~10

By adopting a three-dimensional periodical model, a study was conducted of the flow and heat transfer characteristics of a
labyrinth seal with a transpiration-type smooth surface. As a result, obtained was the variation relationship of the windage-
heat wefficient of the labyrinth seal with circumferential mach numbers under two different flow rates with and without an
inlet pre-swirl. The relationship in question was cmpared with that obtained from experimental values, empirical formulae
and two-dimensional axially-symmetric models. It has been found that the above model can simulate relatively well the
heat transfer characteristics of the labyrinth seal incorporating an inlet pre-swirl. Under a same flow rate and same inlet
pre-swirl ratio, the windage heat coefficient will increase with an increase of wtating speed. At a same flow rate and rotat-
ing speed, the imposition of an inlet pre-swirl can significantly lower the total temperature rise in the labyrinth seal and re-
duce the windage heat coefficient, but will not influence the velocity field on a meridian plane. Under the condition of a
same rotating speed and inlet pre-swirl ratio, an increase of the flow rate will lead to a decrease of the windage heat weffi-
cient and an increase of the velocity on a meridian plane. The structure of the flow field, however, will not change. Key

words: labyrinth seal, inlet pre-swirl, windage heat coefficient, numerical simulation

= Feasibility Analysis and Realization of a Three-dimensional
Aerodynamic Optimization Design for a Multi-stage Turbine] . | /ZHAO Hong-lei, WANG Song-tao, HAN Wan-
jin, et al (College of Energy Science and Engineeringg Harbin Institute of Technology, Habrin, China, Post Code:
150001)/ /Journal of Engineering for Thermal Energy & Power. —2008, 23(1).— 11 ~ 15

Due to the massive computation load and time as well as an excessively huge variable-sample database space specific to
the three-dimensional aerodynamic optimization design of a multi-stage turbine, a long design cycle often results, which is
difficult to wpe with effectively in practice. With the development of computer software and hardware the computation a-
bility of computers has seen a dramatic inpovement. As a result, an effective integration of varied design methods has
been implemented. A vigoous development of the three-dimensional aerodynamic optimization-design study of a multi-
stage turbine, which combines a traditional design method with that of a modern automatic optimization design, represents
an effective approach for overcoming the above-mentioned difficulties and realizing an optimization design of the turbine in
question. The feasibility for combining a quasi-three-dimensional design with the multi-stage local optimization to realize a
three -dimensional design of the turbine was analyzed with the aewdynamic optimization design process of the turbine being
given. The quasi-three-dimensional design mainly involves a direct problem computation of stream surface S2. Based on
the design in question, a preliminary design was performed for improving performance and determining the overall parame-
ters, thus setting the stage for a further optimization design. Then, by, employing a mulii-stage local optimized design and



