文章编号:1001-2060(2008)05-0512-04

气化炉内撞击区气体浓度与火焰形状分析

郭庆华,梁钦锋,于遵宏,于广锁

(华东理工大学煤气化教育部重点实验室,上海 200237)

摘 要:采用水冷取样管与气体净化分析系统,对气化炉内 喷嘴平面的气体浓度分 布进行了热态试验研究。通过图像 处理将火焰图像沿气体取样管方向分为火焰撞击区、过渡区 和无火焰区三部分。试验结果表明,气化炉内火焰撞击面气 体组分与火焰形状密切相关,气体浓度在过渡区变化最大; CO₂和O₂浓度的最高点出现在炉膛中心位置,在无火焰区, 所测气体浓度基本保持不变;CO与 CO₂收率的比值可作为 火焰形状判断的依据;或当 O₂浓度降到小于 0.03 % 时也可 以认为火焰结束。

关 键 词: 撞击火焰; 气体浓度; 火焰形状; 气化中图分类号: TQ038.1 文献标识码: A

引 言

火焰是许多化学反应的主要特征,通常将其分为两大类:扩散火焰和预混火焰^{1]}。扩散火焰在工 业上应用最为广泛,其燃烧过程主要取决于燃料和 氧化剂的相互扩散速率。撞击火焰是工业上常见的 燃烧形式,例如四角切圆锅炉、Shell 气化炉、多喷嘴 对置式气化炉等。撞击流的概念于 20 世纪 60 年代 初由 Elperin 首先提出并进行试验。其基本意义是 使两股气体——颗粒或滴粒两相流沿同轴相向流 动,在两流体的中点处相互撞击以达到强化热、质传 递的效果^[3]。多喷嘴对置式气化炉就是在此基础上 研究开发的一种新型水煤浆气化技术,撞击火焰是 该气化反应的核心过程^[3]。研究气化火焰撞击过程 以及撞击后火焰形状等特征,可以为气化炉内衬结 构的设计与优化提供理论依据。

传统意义上的火焰长度(高度)是通过肉眼观察 或相机拍摄等方法定义的。为了克服观测火焰长度 时产生的视觉误差, Hawthome 等人提出了化学火焰 高度的概念^{[4},定义沿射流轴线方向燃料 99%完全 燃烧的位置为化学火焰高度。Hottel 等人定义的化 学火焰高度为沿轴线方向 CO 与 CO₂ 的比值为 0.15 的位置^[5]。Wade 和 Gore 定义当燃料的摩尔分数减 小到 0.000 5 时的燃烧位置为化学火焰高度^[6]。 Newman 和 Wieczorek 经过进一步的研究^[7],用 CO 和 CO₂ 收率的比值来判定化学火焰高度。上述研究结 果都是相对于燃烧反应而言,充分说明了气体成分 的变化与火焰形状的变化存在对应关系。气化是一 种不完全燃烧反应,气化火焰在工程上应用极其广 泛,尤其在化工行业制备合成气的过程中得以体现。 本研究通过测量小型气化炉内撞击区气体组成的变 化来判断撞击火焰形状的改变。

1 试验装置

1.1 气体采集分析系统

试验在小型多喷嘴对置式气化炉热模平台上进 行^[8],以氧气和柴油作为反应物料,在表1的操作条 件下进行气化燃烧试验的研究。火焰撞击区域的气 体通过气体取样管直接从气化炉内取样。气体取样 管采用带有水冷套管的不锈钢结构,安装在喷嘴平 面,与其中两个相邻喷嘴成45°的位置水平放置。取 样范围由高温炉膛中心至炉壁。气体净化装置对样 气进行预处理,使其达到质谱仪的进样要求。其流 程如图1所示,气体样品由取样管取出后,首先进行 过滤,滤去大部分碳黑,接着进行干燥、再过滤进入 取样泵,然后进入冷凝器,冷凝水经三通、针型阀,由 排水口排出;冷凝后的气体再经干燥器干燥、流量计 计量后进入由英国 HIDEN 公司生产的 HPR20QIC 型 气体分析质谱仪进行在线、实时和定量分析。

收稿日期: 2007-09-17; 修订日期: 2007-11-21

基金项目:国家重点基础研究发展规划(973)基金资助项目(2004CB217703);教育部新世纪人才支持计划(NCET-06-0416); 上海市曙光计划(06SG34)

作者简为:郭庆传(1981-) 是这些你的人,你不是这些情况的。

条件	氧气流量/	氧气速度/	柴油流量	流量比⁄
	$m^{3\circ}h^{-1}$	$\rm m^{\circ} s^{-1}$	$\rm kg^{\circ} h^{-1}$	${ m m}^3{ m ^{\circ}kg^{-1}}$
1	2.38	57.6		1.20
2	2.76	66.8	1.98	1.39
3	2.92	70. 7		1.47

图1 气体采集系统

1.2 火焰监测系统

除分析气体组成外,在气化炉顶部还安装有内 窥式工业电视系统,同时配套 Panasonic WV-CP470 系列彩色 CCD 摄像机,主要对气化燃烧过程进行图 像和视频的拍摄,达到实时监控的目的。同时,采用 水冷夹套及吹扫系统以冷却和保护相机。吹扫系统 采用惰性气体 Ar 作为保护气,直接经摄像机镜头出 口吹入气化炉内,以防止炭黑颗粒污染镜头。其结 构简图如图 2 所示。

图 2 火焰监测系统

- 2 试验结果与讨论
- 2.1 图像处理

拍摄的4个喷嘴撞击火焰图像与取样管位置如 图 3 所示。在众多有关图像处理的方法之中,如何 去除背景是图像处理的关键步骤。试验过程中采用 短时间停止燃料供应的方法拍摄炉膛的背景图像, 如图 4 所示,从而使得火焰主体的提取变得相对 简单。

图 3 火焰图像与取样管

图4 背景图像

图5 沿取样管方向灰度变化曲线

以炉膛中心作为坐标原点,沿取样管位置测得 的灰度曲线,如图 5 所示。可以看出,在火焰撞击中 心附近,两幅图像的灰度值相差较大,随着偏离炉膛 中心的距离越大,两者的差值趋于一个定值。这种 现象的出现是由于火焰的存在使炉膛变得较亮,因 而火焰图像的整体亮度提高,但这并不影响灰度值 沿取样位置的变化趋势。利用图像灰度值的变化将 气化炉内火焰图像分割为火焰撞击区、过渡区和无 火焰区。

本师勇幸茲段 图称着名森萨希尔 Wurnar Heeffonic Publishing House. All rights reserved. http://www.cnki.net

由于4个喷嘴火焰在炉膛中心撞击并产生振荡,因此该区域火焰最亮,其灰度值最高接近饱和, 这也是火焰撞击的中心区域。过渡区是指火焰在中心撞击后向四周扩散时所能达到的最远区域,即火 焰存在的区域。

2.2 主要气体产物浓度分布

图6 条件1~3主要气体的浓度分布

试验研究了不同氧油比条件下主要气化产物 CO、CO₂和H₂气体的浓度分布。如图6所示为操作 条件1~3中主要气体的浓度分布。由图可以看出, 在接近炉膛中心5 cm 左右,所测气体的浓度开始发 生剧烈的变化。具体表现为,随着靠近炉膛中心, CO₂的浓度逐渐增大,CO₃H₂的浓度逐渐减小,发生 变化的区域就是上面提到的火焰过渡区域。随着取 样位置靠近炉壁,各气体浓度基本保持恒定而不发 生明显变化。

在燃烧过程中,化学火焰高度是以 CO 与 CO₂ 收率比值为某一定值时火焰所到达的位置来定义 的。对于不同燃料介质该比值有所不同,例如丙烷 化学火焰高度定义 y_{co yield}/y_{co2},yield=0.002,乙炔化 学火焰高度定义 y_{co yield}/y_{co2},yield=0.016。其中,

$$y_{i, \text{ yield}} = \frac{X_{in} T M_{\text{ws}} i}{m_0 M_{\text{w}} \min}$$
(1)

式中: X_i 一物质 *i* 的摩尔分数; m_T 一全部质量流率; M_i 一物质 *i* 的分子量。

按照有关化学火焰高度的定义,在表1的操作 条件1~3下计算的 CO 与 CO₂ 收率比值变化如图 7 所示。可以看出,随着氧油比的增加,撞击中心 CO₂ 浓度越来越高, CO 、H₂ 的浓度相应减小。CO 与 CO₂ 收率比值由炉膛中心至火焰边缘逐渐增大,相应出 现拐点的位置随氧油比的增大而偏离撞击中心越 远。氧油比的增加是在柴油流量不变的情况下增加 氧气流量,即增加氧气速度,因此,喷嘴速度越高火 焰撞击区面积越大,这与拍摄图像的结果是相一致 的。

在燃烧过程中, OO_2 是主要反应产物, 氧气相对 过量, 因此 $y_{co, yield}/y_{co_2 yield}$ 比值都很小, 这与气化反 应相比(CO 作为主要产物之一, 氧气量相对不足)是 截然不同的。

图7 CO与CO2收率比值变化

2.3 氧气浓度分布

鉴于气化反应氧气量相对不足的特点,考虑用

11 1994-2018 China Academic You har Electronic Publishing House. All rights reserved. http://www.cnki.net

氧气的消耗量作为判断火焰结束的标准。图 8 给出 的是不同操作条件下氧气浓度由撞击中心至炉膛内 壁的变化趋势。可以看出,氧气在撞击火焰中心浓 度最高,在过渡区内越是靠近火焰中心氧气浓度越 高,当火焰结束后氧气浓度基本保持最小值不变;在 气化火焰存在的区域内,随着氧油比的增加,氧气浓 度相应增大。不同氧油比的条件下,氧气浓度都会 在某个位置发生突变,该突变位置与撞击火焰边缘 相一致,此时氧气量基本上在 0.03%附近,近似于 零。也就是说对于这种气化燃烧火焰来说,氧气的 结束也就意味着火焰的结束。

图8 喷嘴平面不同操作条件与取样位置氧气浓度

3 结 论

利用图像灰度值的变化将气化炉内火焰图像分 割为无火焰区、过渡区和主体区。通过对气化炉内 喷嘴平面的气体浓度分布的研究表明,相同操作条

(上接第484页)

和轴向分布,对火焰筒起到很好的保护作用。从算 例可看出,前者可使火焰筒壁温平均降低 350 ^{°C},后 者可使火焰筒壁温平均降低 160 ^{°C}。

(4)隔热涂层厚度对火焰筒壁温影响很小,厚 度选取需综合考虑火焰筒结构、工艺等因素,通常以 0.15~0.3 mm为宜。

参考文献:

- [1] 侯晓春,季鹤鸣. 高性能航空燃气轮机燃烧技术[M].北京:国 防工业出版社,2002.
- [2] 韩介勤. 燃气轮机传热和冷却技术[M]. 西安: 西安交通大学出版社, 2005.
- [3] 曹玉璋. 航空发动机传热学[M]. 北京: 北京航空航天大学出版

件下,无火焰区内各物质浓度基本保持不变。气体 组成发生明显变化的区域产生在过渡区。CO₂、O₂ 浓度的最高点出现在炉膛中心位置,即气化火焰撞 击中心;随着撞击后火焰的衰减,CO₂、O₂ 浓度逐渐 降低,CO₂H₂的浓度逐渐增加。当火焰结束后气体 组成基本保持不变。

气体浓度的变化与火焰形状有密切关系, CO 与 CO₂ 收率的比值仍可以作为火焰结束的标志; 同时 撞击区域内氧气量的消耗也可以作为判断气化火焰 结束的依据, 当氧气浓度降到小于 0.03%时认为火 焰已经结束。

参考文献:

- [1] AG 盖顿, HG 伍法德. 火焰学[M]. 王 方译. 北京: 中国科学技 术出版社, 1994.
- [2] TAMIR A. 撞击流反应器的原理与应用[M]. 伍 沅译. 北京: 化 学工业出版社, 1996.
- [3] 龚 欣,刘海峰.新型水煤浆气化炉[J].节能与环保,2001(6): 15-17.
- [4] HAWTHORNE W R. WEDDELL D S. HOTTEL H C. Mixing and combustion in turbulent gas jets // Third Symposium on Combustion and Flame[C]. Williams & Wilkins, 1949.
- [5] HOITEL H C. Fire modeling. International symposium on the use of fire models[C]. 1961, 32-47.
- [6] WADE R GORE J P. Visible and chemical flame lengths of a cetyle ne/ //air jet diffusion flame[C]. NISTR 5904: 1996: 41-52.
- [7] NEWMAN S J. WIECZOREK C J. Chemical flame heights [J]. J. Fire Safety, 2004, 39, 375-382.
- [8] 梁钦锋,牛苗任.撞击气化火焰边缘的分形特性[J].热能动力 工程.2007,22(1):57-60.

(编辑 陈 滨)

社,2005.

[4] 焦树建. 燃气轮机燃烧室[M]. 北京: 机械工业出版社, 1981.

- [5] 航空发动机设计手册总编委会.航空发动机设计手册:第9册
 -主燃烧室[2].北京:中国航空工业出版社,2000.
- [6] 李永康, 胡正义. 有隔热涂层的火焰筒壁温计算方法[J]. 燃气 涡轮试验与研究, 1997, 10(2): 27-31.
- [7] 胡正义, 陈志杰. 对流气膜冷却火焰筒壁温计算方法[J]. 燃气 涡轮试验与研究, 1993 10(3): 21-25.
- [8] 李 彬,程 波.高温升火焰筒壁面及头部复合冷却设计分析
 [J].燃气涡轮试验与研究,2007,20(3):8-10.
- [9] 董志锐. 刘高文. 双层壁火焰筒二维壁温计算[J]. 燃气涡轮试 验与研究, 1999 12(4): 25-29.
- [10] LEFEBVRE A H, Influence of fuel properties on gas turbine combustion performance [R]. AFWAL-TR-84-2104, 1985.

(编辑 韩 锋)

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

method, studied was the influence of the solid—phase particulate mass carrying rate in a two—phase turbulent flow of a flue gas desulfuration tower on the gas—phase flow field. When the particulate Strokes number in the tower is kept in a range from 1 to 100, the gas—solid flow coupling characteristics in the tower was analyzed by gradually increasing the particulate mass carrying rate. As a result, under different particulate mass carrying rates the in—tower gas—solid flow characteristics, the particulate concentration distribution along the axial direction, the gas—phase axial speed radial distribution and the bed layer pressure drop curves have been obtained. It has been found that when the particulate mass carrying rate is not greater than 0.031, the particulate flow exhibits a relatively good follow—up nature and assumes a pneumatic transmission flow state. In such a case, the particulate movement has an extremely small influence on the continuous phase field and can be neglected. When the particulate mass carrying rate is greater than 0.031, the gas—solid two—phase flow characteristics are dependent on each other and exhibit an obvious unstable state and non—uniformity. When the particulate mass carrying rate is relatively big, the bed layer pressure drop is closely related to the discrete particulate mass carrying rate is relatively big, the bed layer pressure drop is closely related to the discrete particulate field distribution. **Key words**: direct simulation Monte Carlo method, gas—solid two—phase flow; coupling characteristics

气液两相流容积含气率的图像检测方法=Image processing—based Detection Method for the Measurement of Volumetric Gas Content in a Gas—liquid Two—phase Flow[刊,汉] / ZHOU Yun—long, SHANG Qiu—hua, FAN Zhen—ru, HONG Wen—peng (College of Energy Source and Mechanical Engineering, Northeast Dianli University, Jilin, China, Post Code: 132012)// Journal of Engineering for Thermal Energy &Power. — 2008, 23(5). —507~511

A method for the on—line detection of volumetric gas content of a gas—liquid two—phase bubble flow has been studied and developed. The method in question is based on digital image processing technology, employs a high—speed video camera system to conduct a real time camera shooting and image collection of the bubble flow process in vertical risers and makes use of rim detection and image fill—in technology to extract gas bubbles and calculate their sizes, thereby calculating the volumetric gas content. A real time on—line detection and measurement have been made of the volumetric gas content under different operating conditions. Test results show that compared with real values, the detected values have a relative error not exceeding 15%. Having attained a relatively high measurement accuracy, the method under discussion can be used for the on—line detection of parameters in a gas—liquid two—phase flow. **Key words**: gas—liquid two phase flow, volumetric gas content, image processing, gas bubble

气化炉内撞击区气体浓度与火焰形状分析= Gas Concentration and Flame Shape Analysis of the Impinging Zone in a Gasification Furnace[刊,汉]/GUO Qing-hua, LIANG Qin-feng, YU Zun-hong, YU Guang-suo (E-ducation Ministry Key Laboratory on Coal Gasification, East China Institute of Technology, Shanghai, China, Post Code: 200237)// Journal of Engineering for Thermal Energy & Power. - 2008, 23(5). -512~515

By using a water— cooled sampling tube and gas purification analytic system, a hot— state experimental study has been conducted of the gas concentration distribution of a nozzle plane in a gasification furnace. Through an image processing, the flame image was divided into three portions along the direction of a gas sampling tube: namely, a flame impinging zone, a transition zone and a flameless zone. Test results show that the gas concentration in the flame impinging plane in the gasification furnace are closely related with the flame shape, and the gas concentration in the transition zone has the greatest changes. The maximum concentration of CO_2 and O_2 appears at the central location of the flame. In the flame less zone, the measured gas concentration has kept basically unchanged. The ratio of CO and CO₂ recovery rate can serve as an underlying basis for judging the flame shape, or when O_2 concentration decreases to less than 0. 03%, it can be regarded as an extinguishment of the flame. **Key words:** impinging flame, gas concentration, gasification, multi— nozzle contraposition

气流式喷嘴雾化特性试验研究=Experimental Study of Atomization Characteristics of an Airflow Type Nozzle [刊,汉] / REN Lan—xue, MA Sheng—yuan, WANG Yong—feng, PANG Xue—jia (Harbin No. 703 Research Institute, Harbin, China, Post Code: 150036)// Journal of Engineering for Thermal Energy & Power. — 2008, 23 (5). — 516 7518 2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net