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long, DIAO Cheng-dong, WU Mao-song, et al (College of Energy Source and Mechanical Engineering, Northeast University
of Electric Power, Jilin, China, Post Code: 132012)/ /Journal of Engineering for Themal Energy &Power. — 2008, 23
(6).—630~634

By adopting a method of high-speed video camera shooting, a study has been conducted of the vortex shedding characteris-
tics of a staggered tube bundle, which is swept across by a vertically rising gas-liquid two-phase flow in a ®ectangular
duct.The tube bundle has been arranged in three kinds of rotating square with a pitch ratio of 1. 0, 1.5 and 2.0 respec-
tively. Shown are the whole process of entrainment of surrounding bubbles and the formation of a gas nucleus after a gas
column during a vortex formation and development course. It has been wncluded through a statistics survey of the vortex
shedding cycles that with an increase of the void fraction within the range of the present experiment, the shedding frequen-
cy will gradually increase, leading to a shedding of the vortex, and the Strovha number assumes a gradual decrease.When
the void fraction a=0. 147, the phenomenon of a periodical vortex shedding will eventually disappear. Key words: gas-
liquid two phase flow, vortex shedding, staggered tube bundle

C = Numerical Analysis of the Heat Transfer Intensification in a C Type
Chaotic Structure] ., ]/WANG Yong-ging, DONG Qi-wu (College of Mechanical and Power Enmgineering, East
China University of Science and Technology, Shanghai, China, Post Code: 200237), LIU Min-shan (Henan Povincial Key
Laboratoty on Pwocess Heat Transfer and Enewy Savings, Zhengzhou University, Zhengzhou, Post Code: 450002)/ /Journal
of Engineering for Themal Fnewgy & Power. — 2008, 23(6).— 635 ~ 639

With more and more academics giving priority to and engaging in the research on intensified heat transfer, the new tech-
nology of utilizing a chantic convection to intensify heat transfer has attracted ever increasing atiention. The authors have
conducted a numerical simulation of the fluid flow and heat transfer in a C-type chaotic structure by using CFD (Compu-
tational Fluid Dynamics) software Fluent, and compared the detailed information depicting the difference betveen the
structure in question and ordinary straight structures in respect of fluid flow field distribution, temperature profile and heat
transfer characteristics. Also analyzed were the intensified heat transfer performance and specific features of the C-type
chaotic structure. The analytic results show that the latter enables the fluid to produce a chaotic convection at a relatively
low speed.This fluid state will intersify the turbulence and pertuibation of the fluid, enhance the mixing of flows in the
main flow zone or at places near walls, intensify the heat trandfer in flow passages, and impart a uniform temperature dis-
tribution on flow channel cross section.Moreover, the Nusselt and Poiseuille number G . e. fRe value) for the heat transfer
in a chaotic convection is no longer a constant like that of an ordinary laminar flow, but will increase with an increase of
Reynolds number. Key words: chaotic convection, heat transfer intensification, laminar flow, computational fluid dynamics
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= Numerical Simulation of the Heat Exchange Characteristics of
the Flow in a Noncircular Microchannel Heat Sink| , ]/XIAO Chun-mei, CHEN Yong-ping, SHI Ming-heng, et
al (College of Energy Source and Envionment, Southeast University, Nanjing, China, Post Code: 210096 )// Journal of Fn-
gineering for Thermal Erergy & Power. — 2008, 23(6). — 640 ~ 644

Established was a three-dimensional model for a single-phase flow and heat exchange process in a noncircular silicon mi-
cwochannel, and numerically simulated was the heat exchange of flows in a triangular rectangular and trapezoidal mi-
cwochannel respectively. It has been found that cross-sectional averaged Nusselt number attains a maximum value at the in-
let of the channel, and then will dragtically decrease along a fluid flow direction. It tends to be constant when the flow has
been fully developed. Both solid and fluid temperatures grow in an appoximately linear way along the flow direction. The
wall temperatures on the heat exchange surfaces increase only along the flow direction and those along the direction per-
pendicular to the flow, however, basically maintain an equilibrium state. Reynolds number exercises a relatively big influ-
ence on the flow and heat exchange characteristics of the micwchannel. The higher the Reynolds number, the greater the

corresponding Nusselt number. It has been found, through the. analysis and comparison of the themodynamic wst-effective-



