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= Study and Comparison of Flowing-steam Wetness Measurement Meth-
od§f . ]/NING De-liang, GAO Lei, LIU Xin-quan (CSIC No. 703 Research Institute, Harbin, China, Post Code:
150036)/ /Journal of Engineering for Thermal Energy & Power. — 2009, 24 (2).—149 ~ 153

In the light of the importance of flowing wet-steam wetness measurement, summed up were both the commonly used meth-
ods and the approach under current exploration for measuring the flowing-steam wetness along with an analysis of the limi-
tations of various methods during their applications. Based on the theory that with a different equivalent permittivity of sat-
urated wet steam the capacity of a capacitor will also be different at an identical pressure and temperature, presented and
analyzed was a new approach for the on-line measurement of the flowing-steam wetness by using a cylindrically shaped ca-
pacitor type sensor. The calibration test results show that this type of sensors has stable static characteristics, and when the
wetness ranges from 0 to 1294, the steam flow wemess assumes a comparatively conspicuous nonlinear relationship with
the output frequency difference. Finally, the authors have mentioned problems needing special attention during the calibra-

tion tests and sensor design. Key words: flowing stean, wetness measurement, equivalent pemittivity, capacitance method

= Flow Field Simulation of Turbomachine Blades with Their
Tip Clearance Leakage Being Suppressed] ., |/ MAO Jiani (College of Energy Source and Power Engineering,
Huazhong University of Science and Technology, Wuhan, China, Post Code: 430074), CAO Zi-yin (Applied Mathematics
and Mechanics Research Institute, Shanchai University, Shanghai, China, Post Code: 200072)// Journal of Engineering for
Thermal Energy &Power. — 2009, 24(2). —154 ~ 157

With the growth of national economy, turbomachines are widely used in industrial and mining enterprises. In the light of
the special feature of a major influence as exercised by blade-tip clearance stream on turbomachine performance, designed
was a new type of blades. The blades in question are provided with a “dovetail crown” at the blade tip, foming a “barb”
at both the pressure and suction side of the blade tip.Through a numerical simulation of the flow fields in the blades and
other ordinary blades, compared was the difference of the overall pefomance, flow field characteristics and blade-tip
clearance leakage of a compressor between the above two kinds of blades under equivalent conditions. The authors con-
cluded that the “dovetail crown” shaped blades thus optimized and designed can relatively well maintain the pressure on
the blade surfaces, reduce the possibility that a leakage vortex occurs at blade tips and diminish the leakage from the
blade tip clearance. The data and relevant conclusions thus obtained can provide a helpful reference and basis for improv-
ing and raising the operating performance of turbomachines. Key words: tuitbomachine, “ dovetail crown” shaped blade,

numerical simulation, blade-tip clearance stream, leakage vortex

= Application of Structured Grids in a Gas-heat Coupled Calculation
[ s 1/GUO Zhao-yuan, WANG Qiang, YAN Pei-gang, et al (Propulsion Theory and Techmology Research Irstitute,
Harbin Institute of Technology, Harbin, China, Post Code: 150001)// Joumal of Engineering for Themal Enemy & Pow-
er. —2009, 24(2). —158 ~ 162

A structured grid for calculating gas-heat coupling was established by adopting a cmmercial grid generator, and multi-
block grid technology was employed to improve the grid quality.The areas of flow-and themal boundary layers etc. subject
to a welatively big change of flow field parameters have been refined. In the meantime, a high-precision numerical transfer
mode was used to perform a numerical transfer among various grid blocks, thereby ensuring the high-precision difference
scheme among the grid blocks not to be destoyed and thus enhancing the coupled calculating efficiency. Finally, through
a gas-heat coupled calculation of Mark II blades and a comparison of the calculation results with test ones, it has been
found that the difference of the pressure distribution along the blade profile at the pitch diameter was in a range of 1%,
while, that of the temperature distribution in, a majority of places, in, a range of 4%). Key words; structured grid, high ac-



