文章编号:1001-2060(2009)02-0236-06

合成气-甲醇掺烧火焰研究

张文兴,穆克进,王 岳,肖云汉

(中国科学院工程热物理研究所先进能源动力重点实验室,北京100190)

摘 要: 对合成气一甲醇掺烧火焰进行了实验研究及数值分析。实验观测了火焰形态,测量了火焰温度及烟气中 NO_x 污染物的浓度。实验表明: 相同 功率条件下,相比于合成气 火焰,合成气一甲醇掺烧火焰 尺寸略显细长、高温区温度略 低、烟气中 NO_x 排放较少。通过数值计算分析指出,合成气 一甲醇掺烧火焰 尺寸变长缘于火焰中甲醇未能及时消耗完, 火焰温度降低缘于甲醇火焰温度较低,烟气中 NO_x 排放减 少缘于火焰中加入甲醇有利于抑制热力型 NO 及中间型 NO 的生成。

关 键 词: 合成气; 甲醇; 掺烧; NO_x

中图分类号: TK16 文献标识码: A

引 言

煤炭是我国的主要一次能源. 在能源消费结构 中占据着极大的比重, 并且在未来很长一段时期内, 煤炭仍将是我国的主要能源。煤炭多联产能从系统 的高度出发, 结合各种生产技术路线的优越性, 与生 产过程耦合到一起, 彼此取长补短, 具有资源利用率 高、能耗低、投资和运行成本低、全生命周期污染物 排放量最少等优点^[1~3]。甲醇一电联产是我国较为 现实的煤炭联产方式, 在此联产系统中燃气轮机是 其动力核心, 通过系统优化集成, 煤制合成气一部分 用于燃气轮机联合循环发电; 另一部分用于合成甲 醇, 弛放气再送入燃气轮机发电。甲醇除作为产品 销售外, 还可以作为联合循环调峰发电的燃料。在 此系统中燃气轮机的燃料包括合成气、弛放气和甲 醇及杂醇。

将甲醇引入燃气轮机燃烧室与合成气掺烧可以 大大提高联产系统的柔性,在电力紧张时,利用甲醇 和合成气同时发电,而在电力富裕时,可以多生产甲 醇以储存能量。但对于甲醇一合成气掺烧的研究工 作很少,要在联产中实际运用,必须对其火焰形态、 污染物排放及火焰稳定性等进行研究。

通过对合成气—甲醇掺烧火焰进行实验及数值研

究,分析了甲醇的加入对合成气燃烧特性的影响,为在 联产系统中进行合成气一甲醇掺烧提供一定的基础。

1 实验装置及数值模型

1.1 燃烧器及测量仪器

实验所用燃烧器结构如图 1 所示。燃烧器由喷 嘴、石英玻璃罩和烟气缩口段 3 部分组成。喷嘴中 心为甲醇流道,其出口装有压力旋流雾化喷嘴,甲醇 经喷嘴雾化后以液态喷雾的形式喷出;外侧是环形 的空气流道;合成气环形流道位于甲醇流道与空气 流道之间,在其出口处的旋流器用以稳焰,旋流器可 以更换。实验所用旋流器的通流槽与轴向的夹角为 30°,可产生旋流数 *S*=0.54 的旋流。烟气缩口段用 于烟气整流,其侧面开有测量孔,可进行烟气温度测 量及烟气取样。

图1 实验用燃烧器装置

实验使用数码相机拍摄了火焰形态图像,使用烟 气分析仪(VARIO plus)测量了烟气中NO_x 污染物的 浓度(体积分数),并使用热电偶测量了开放式火焰 (未加石英玻璃罩及烟气缩口段)高温区的温度分布。

为了使不同工况条件下所测得的污染物排放量 具有可比性,采用基于单位功率的排放指数 MSE

收稿日期: 2008-03-17; 修订日期: 2008-12-19

基金项目:国家自然科学基金资助项目(50576098);国家高技术研究发展计划(863)基金资助项目(2006AA05A104)

作者简介: 改充兴 USAma 表 宏商品明人。 出界科学院硕古研究先 blishing House. All rights reserved. http://www.cnki.net

(Mass Specific Emission)作为污染物排放对比的指 标. MSE 可由式(1)进行计算^[3~4].

 $MSE_{i} = \frac{组分 i 的质量流量}{总功率} = \frac{1 000X_{i} \circ Q_{g} \circ MW_{i}}{22.4 \times P}$ (1)式中: X_i 一组分 i 的体积分数; Q_g 一标况下理论烟 气的体积流量: MW_i 一组分 i 的摩尔质量: P一总功 率。由于 NO_x 中NO所占比例通常达到90%以上, 计算 MSE NO_时可采用 MWNO代替 MWNO_。

数值模型 1.2

运用 Fluent 软件包中的涡团耗散模型、离散相 模型等计算模型,对合成气湍流扩散燃烧及甲醇喷 雾燃烧进行了三维数值求解,考察了合成气一甲醇 掺烧火焰与合成气火焰在温度分布及组分浓度分布 上的差异,并定性分析了合成气一甲醇掺烧火焰尺 寸变化的原因:此外还运用 CHEMKN 软件包中的 对冲扩散火焰模型,采用GRI-Mech 3.0 化学反应动 力学机理,对合成气一空气对冲扩散火焰及合成气/ 甲醇-空气对冲扩散火焰进行了数值计算,考察了 甲醇的加入对于 NO 生成速率及与 NO 生成有关的 部分基元浓度的影响,并定性分析了合成气一甲醇 掺烧火焰NOx排放减少的机理。以下分别对各计 算模型作简单介绍。

1.2.1 涡团耗散模型

涡团耗散模型(Eddy Dissipation Model, EDM)是比 较常用的湍流扩散燃烧模型,该模型是在 Magnussen 和 Hiertager 提出的涡团破碎模型的基础上进行改进 后得到的^[5]。模型中,整体反应速率由湍流混合作用 所控制,组分 i 在化学反应 r 中的净生成速率 $R_{i,r}$ 由 下面两个表达式中数值较小的一个给出.

$$R_{i,r} = \upsilon'_{i,r} M W_i A \varrho \frac{\varepsilon}{k} \min_{R} \left(\frac{Y_R}{\upsilon'_{R,r} M W_R} \right)$$
(2)

$$R_{i,r} = \upsilon'_{i,r} MW_i AB^{\rho} \frac{\varepsilon}{k} \frac{\sum_{P} Y_P}{\sum_{j}^{N} \upsilon''_{j,r} MW_j}$$
(3)

式中: $\upsilon'_{i,r}$ 、 $\upsilon''_{i,r}$ 一组分 *i* 在化学反应 *r* 中的反应物 和生成物的化学恰当比系数; MWi-组分 i 的分子 量; ρ 一混合物密度;N一系统中化学组分的数目; Y_P 一生成物 P 的质量分数: $A \cdot B$ 一经验常数, 取值 分别为4.0和0.5。

由于涡团耗散模型只考虑单步(或双步)总包化 学反应,而忽略了化学反应中间产物的影响,因而会 导致所预测的温度值偏高,可以通过对组分的比热 进行修正来获得比较合理的温度值^[6]。由于本文仅 作定性计算,故未进行比热修正。

在合成气的燃烧计算中,模型仅包含了 CO 及 H2 的单步化学反应,如式(4)和式(5)所示:

$$c_0 + \frac{1}{2} O_2 \rightarrow CO_2 \tag{4}$$

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O \tag{5}$$

在合成气与甲醇的掺烧计算中,模型又加入了 CH3OH 的单步化学反应, 如式(6)所示。

$$CH_{3}OH + \frac{3}{2}O_{2} \rightarrow CO_{2} + 2H_{2}O \tag{6}$$

1.2.2 离散相模型

离散相模型(Discrete Phase Model, DPM)是用于 求解流场中连续相与弥散相间相互作用的计算模 型。该模型依据对颗粒物理属性及颗粒初始条件 (初始位置、速度、尺寸及温度等)的设置,用来初始 化颗粒的轨道和传热/传质计算。当颗粒穿过流体 时,颗粒的轨道、传热量及传质量可以根据该位置流 体作用于颗粒的各种作用力及对流、辐射等所引起 的热量/质量传递来进行计算。

模型中,连续相通过欧拉描述法下的 N-S 方 程进行求解,而弥散相则是在拉格朗日描述法下进 行求解。在拉格朗日描述法下,离散相粒子的受力 平衡方程如式(7)所示,通过对其进行积分即可获得 粒子的运动轨迹。

$$\frac{\mathrm{d}\,u_p}{\mathrm{d}t} = F_{\mathrm{D}}(u - u_{\mathrm{p}}) + F_{\mathrm{other}} \tag{7}$$

式中: u, u_p 一流体速度和粒子速度: $F_D(u - u_p)$ 、 F_{other} 一单位质量粒子所受的阻力和其它的附加力。 1.2.3 对冲扩散火焰模型

在扩散燃烧火焰中,当对流和扩散的时间尺度远 远大于化学反应的时间尺度时,即 Da >1 时,扩散火 焰可以看作是由一系列很薄的层流、局部一维的火焰 面所组成, Peters 根据这个观点提出了 Flamelet 模 型7。这些简单的层流一维火焰就是我们通常所说 的对冲扩散火焰,其模型如图2所示,燃料及氧化剂 从各自的喷嘴中相向喷出,在两喷嘴之间形成一个稳 定的平面扩散火焰。该模型流场描述简单准确,便于 利用化学反应动力学模型进行数值计算,被广泛地用 于扩散火焰机理的研究^{8~9}。轴对称柱坐标系下对 冲扩散火焰模型的控制方程组为:

$$\frac{d}{dx}\left(\frac{\rho_{u}}{2}\right) + \frac{\rho_{v}}{r} = 0$$

$$\frac{1}{r}\frac{\partial_{r}}{\partial r} + \frac{\partial}{\partial_{x}}\left(\frac{\rho_{uv}}{r}\right) + 3\frac{\rho_{v}^{2}}{r^{2}} - \frac{\partial}{\partial_{x}}\left[\mu\frac{\partial}{\partial_{x}}\left(\frac{v}{r}\right)\right] = 0$$

$$\rho_{u}\frac{dT}{dx} - \frac{1}{c_{p}}\frac{d}{dx}\left[\lambda\frac{dT}{dx}\right] + \frac{\rho}{c_{p}}\sum_{k}c_{pk}Y_{k}V_{k}\frac{dT}{dx} + \frac{\rho_{v}}{c_{p}}\sum_{k}c_{pk}Y_{k}V_{k}\frac{dT}{dx} + \frac{\rho_{v$$

 $\pm \sum_{h_k \omega_k = 0}$ $\frac{c_p}{k}$ House. All rights reserved. http://www.cnki.net

以上各式的推导过程及式中各项含义可参见文献 3]及 CHEMKIN 用户手册。

图 2 对冲火焰模型示意图

2 结果与分析

2.1 实验结果

实验所用合成气中, CO、H2、N2 的摩尔分数分别为47.8%、37.3%和14.9%, 合成气的热值约为10 MJ/m³。实验在表1中所列各工况条件下, 进行了火焰形态图像的拍摄、烟气中 NO_x 浓度的测量, 以及开放式火焰中高温区温度分布的测量。

表1	实验工况表

编号	总功率 / kW	甲醇功率 /kW	甲醇摩尔分数 / %
1—a	11.68		—
1— b	11.68	2.43	8.5
2—a	10. 22	—	—
2— b	10.22	2.43	10. 0
3—a	8.76	—	—
3— b	8.76	2.43	12.0
4—a	7.30	—	—
4— b	7.30	2. 43	15. 0

图 3 为 10.22 kW 功率条件下火焰形态的对比。 由图可以看出,合成气一甲醇掺烧火焰比合成气火 焰略显细长,且在掺烧火焰的中心处还有一股外伸 出主火焰区细小的火焰。

图 4 为 NO_x 排放指数 MSE_{NOx}相对于燃烧器功率的变化关系。由图可以看出,在相同功率条件下, 合成气一甲醇掺烧火焰的 NO_x 排放指数低于合成 气火焰的排放指数;随燃烧器功率的增大,合成气一 甲醇掺烧火焰与合成气火焰间 NO_x 排放指数的差 距缩小。由表1可以看到随功率的增大掺烧火焰中 甲醇的比例在降低,这也就解释了NO_x排放差距缩 小的原因。

合成气火焰

合成气-甲醇掺烧火焰

图 3 相同功率条件下火焰形态对比

图5 开放式火焰高温区温度分布情况

图 5 为 10.22 kW 功率条件下,开放式火焰高温 区的温度分布情况,测量位置在 h/D=4 截面上,其 中 h 为距喷嘴的高度,D 为合成气环形流道的内直 径。由图可以看到,相比于合成气火焰,合成气一甲 醇掺烧火焰中高温区的温度值较低。

?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

运用 Fluent 软件包中的 *k*一 ε、EDM、DPM 等模型, 求解了相同功率条件下合成气火焰及合成气一 甲醇掺烧火焰中温度分布、组分浓度分布等信息。 计算网格划分及边界条件情况如图 6 所示, 该网格 是由结构化网格与非结构化网格所组成的混合型网 格。计算中未考虑辐射换热的影响, 所有壁面均设 为绝热条件, 甲醇喷雾液滴的初始粒径及速度参考 文献[10] 分别取为 40 ^µm 及 10.0 m/s。计算结果如 图 7 ~ 图 9 所示。

图6 网格划分及边界条件情况

图7 掺烧火焰中甲醇液滴运动轨迹

图 7 为合成气一甲醇掺烧火焰中甲醇喷雾液滴 的运动轨迹。由图可以看出,甲醇液滴在离开喷射点 较短的距离内即蒸发完毕,而且由于粒径较小,液滴 的跟随性较好,在合成气旋流的作用下做旋转运动。

图 8 火焰中温度分布

图 8 和图 9 分别为合成气火焰及合成气一甲醇 掺烧火焰中的温度分布图及燃料浓度分布图。结合 图 8 及图 9 可以看出,相比于合成气火焰,掺烧火焰 的尺寸略显细长,这在趋势上与图 3 所示的实验结 果一致。由图 9 可以看到在掺烧火焰中,CO 及 H2 离开喷嘴一段距离后即消耗完毕,而甲醇则迟迟未 能消耗完,这也就说明掺烧火焰尺寸较长是由于甲 醇未能及时燃烧完而导致的,从这个角度分析,可以 推断在图 3 所示掺烧火焰中外伸出主火焰区的细小 火焰应该是甲醇火焰。

掺烧火焰中甲醇消耗较慢的原因,一方面在于 甲醇燃烧前需要经历一个蒸发过程,这就会使甲醇 燃烧滞后;另一方面则在于甲醇处于合成气的包围 之中,合成气的燃烧阻隔了甲醇与空气的混合,使甲 醇得不到充足的氧气进行燃烧。

?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

由图 8 可以看到,相比于合成气火焰,掺烧火焰 中高温区的温度值略低,这在趋势上与图 5 所示的 实验结果一致。掺烧火焰高温区温度较低的原因在 于甲醇的火焰温度较低,如表 2 所示。

表 2 各燃料等压绝热火焰温度值(\$=1.0)

燃料	绝热火焰温度/K
H ₂	2 380
CO	2 383
CH ₃ OH (g)	2 2 2 2 0

注:表中数据由 CHEMK IN 软件包中的 Equilibrium 模型使用 GRI-Mech 3.0 化学反应机理计算所得。

需要注意的是,正如前文所说使用 EDM 模型计 算所得的火焰温度值偏高,图 8 中所示温度最高值 已超过燃料的绝热火焰温度,远远偏离了真实值,只 能做定性参考。

2.3 掺烧火焰 NO 减排机理分析

合成气一甲醇掺烧火焰中高温区火焰温度较低 有利于抑制热力型 NO_x 的生成,这也从一个方面解 释了图 4 所示的掺烧火焰 NO_x 排放指数较低的原 因。但由于 NO_x 生成机理较为复杂,除温度外,多 种基元组分都会对 NO_x 的生成产生影响,为能更好 地分析 NO_x 排放指数降低的机理,将基于 CHEMKIN 软件包中的对冲扩散火焰模型运用 GRI-Mech 3.0 化学反应动力学机理,分析在合成气火焰 中加入甲醇对于 NO_x 的生成所产生的影响。由于 在 NO_x 中主要成份是 NO,本文仅针对 NO 的生成进 行分析。

图 10 NO 生成速率分布情况

本文计算了100%合成气及80%合成气+20% 甲醇(摩尔分数)两种燃料条件下,对冲扩散火焰中 NO生成速率分布和与NO生成相关的关键组分的 浓度分布。计算中燃料速度和空气速度均取为1.0 m/si燃料出口与空气出口间距取为0.02m,所对应 的流场宏观拉伸率为 100 s⁻¹。计算结果如图 10~ 图 14 所示。

图 12 0 原子浓度分布情况

图 10 为 NO 生成速率的分布情况,由图可以看出,随着甲醇的加入,对冲火焰中 NO 的生成速率降低。NO 的生成主要有4 种机制:热力型、快速型、N₂O 中间型以及燃料型。由于所用燃料中不含 N 的化合物,这里仅考虑前3 种生成机制。

热力型NO生成机制主要包括式(8)和式(9)两 个化学反应式:

$0+N_2 \in$	NO+N	(8)
$0+N_2 \in$	NO+N	(8

 $N+O_2 = NO+O$ (9)

快速型NO 生成机制主要包括式(10)~式(12) 3 个化学反应式:

- $CH + N_2 \rightleftharpoons HCN + N$ (10)
- $HCN + O \rightleftharpoons NCO + H \tag{11}$
- $NCO+O \rightleftharpoons NO+CO$ (12)

N₂O 中间型 NO 生成机制主要包括式(13)~式

- (15)3 个化学反应式:
 - $O + N_2 + M \stackrel{\leftarrow}{\longrightarrow} N_2 O + M \tag{13}$

m/s. 燃料出口与空气出口间距取为 0.02 m,所对应 H+N2O NO+NH (14) ?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net (15)

 $0+N_{2}0 \approx N_{0}0+N_{0}$

图 11~图 14 依次为对冲扩散火焰中 N 原子、0 原子、HCN 基及 N₂O 基的浓度分布情况图。热力型 NO 的生成主要受 N 原子浓度和 O 原子浓度影响, 由图 11 及图 12 可以看到, 甲醇的加入使得对冲火 焰中N原子和O原子的浓度有所降低,这就有利于 抑制 NO 的生成: 而 HCN 基是快速型 NO 生成机制 中的关键基元,由图 13 可以看到,甲醇的加入使得 对冲火焰中的 HCN 基从无变到有, 有利于促进快速 型 NO 的生成: 中间型 NO 的生成主要受 N₂O 基控 制,图 14 显示甲醇的加入使得 N2O 基浓度降低,有 利于抑制 NO 的生成。

图 13 HCN 基浓度分 布情况

图 14 NoO 浓度分布情况

可见,在合成气火焰中加入甲醇,有利于抑制热 力型 NO 及中间型 NO 的生成,同时也会促进快速型 NO 的生成,但总体上,甲醇的加入有利于抑制 NO 污染物的生成。

结

3

论

分析。实验发现,相比于合成气火焰,在相同功率条件 下,合成气一甲醇掺烧火焰尺寸略显细长、高温区温度 略低、烟气中 NO x 排放较少。通过数值计算分析了火 焰尺寸变化的原因及 NO_x 排放减少的机理。

对火焰的三维数值求解表明,合成气一甲醇掺 烧火焰尺寸变长是由于甲醇未能及时消耗完而导致 的,一方面是由于甲醇燃烧前所经历的蒸发过程使 其燃烧滞后:另一方面是由于甲醇处于合成气的包 围之中,合成气燃烧阻隔了空气与甲醇的混合,造成 甲醇没有充足的氧气进行燃烧。

基于对冲扩散火焰的数值分析表明,在合成气 中加入甲醇除能降低火焰高温区的温度,有利于抑 制热力型 NO 的生成外,还有利于降低火焰中 O_{N} 及 N₂O 浓度,从而有利于抑制热力型 NO 及中间型 NO 的生成:同时,甲醇的加入使得火焰中 HCN 基从 无变到有,有利于促进快速型 NO 的生成。但总体 上,甲醇的加入有利于抑制 NO 的生成。

在实际运用中,通过改用气动雾化喷嘴一方面可 以提高甲醇的雾化质量,缩短其蒸发时间;另一方面 还能及时供给甲醇燃烧所需的空气,合成气一甲醇掺 烧火焰中甲醇燃烧滞后的问题将会得到较大改善。

参考文献:

- 肖云汉,张士杰.煤炭多联产技术和氢能技术[]].华北电力大 [1] 学学报,2004,31(6):5-9
- 胡笑颖,顾煜炯,杨 昆.浅析煤炭多联产技术[J].煤炭技术, [2] 2005, 24(12); 7-9.
- [3] TURNS STEPHEN R. An introduction to combustion: concepts and applications[M]. (2nd ed). Singapore: McGraw-Hill Book Co, 2000.
- 鲁冠军, 赵黛青, 杨浩林, 等. 甲烷/富氧射流扩散 火焰 NO_x 的 [4] 排放特性[J]. 过程工程学报, 2007, 7(1): 29-32
- MAGNUSSEN B F, HJERTAGER B H. On mathematical model of tur-[5] bulent combustion with special emphasis on soot formation and combustion //16th Symp(Int) on Combustion [C]. London: The Combustion Institute, 1976. 719-729.
- ROSE J W, COPPER J R. Technical data on fuel[M]. Edinburgh: [6] Scottish Academic Press, 1977.
- PETERS N. Laminar flamelet concepts in turbulent combustion //21st [7] Symoposium (International) on Combustion[C]. Pittsburgh: The Combustion Institute, 1986. 1231-1250.
- [8] HUI XIN, ZHANG ZHEDIAN, MU KEJIN, et al. Effect of fuel dilution on the structure and pollutant emission of syngas diffusion flames // ASME Turbo Expo 2007 [C]. Canada: ASM E 2007. 1-9.
- 张哲巅. 湿空气扩散火焰的实验和数值研究[D]. 北京: 中国科 [9] 学院研究生院,2006
- [10] LINCK M B. Spray flame and exhaust jet characteristics of a pressurized swirl combustor [D]. Maryland: University of Maryland 2006.

锋)

韩 (编辑 **了实验研究及数值** Irnal Electrome Publishing House. All rights reserved. http://www.cnki.net 21. 对合成气一甲醇掺烧火焰进行

to be solved for using low-heat-value fuels. Key words: biomass, low heat value, miniature gas turbine

合成气-甲醇掺烧火焰研究=Investigation of Mixing-dilution Combustion Flames of Syngas-methanol[刊,汉]/ ZHANG Wen-xing, MU Ke-jin, WANG Yue, et al (Key Laboratory on Advanced Energy and Power, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China, Post Code: 100190)// Journal of Engineering for Thermal Energy & Power. — 2009, 24 (2). — 236 ~ 241

An experimental study and numerical analysis was performed of the mixing-dilution combustion flames of syngasmethanol. During the experiment, the flame morphology was observed, and the flame temperature as well as the concentration of NO_X pollutants in the flue gas were measured. The test results show that under the condition of an equal power output, the shape of the mixing-dilution combustion flame of the syngas-methanol seems slightly slender as compared with that of a syngas flame, the temperature in the high-temperature zone is a bit low and the NO_X emissions from the flue gas are comparatively small. A numerical calculation and analysis shows that the mixing-dilution combustion flame in question becomes longer, because the methanol in the flame has not been burnt out in time, and the drop of flame temperature comes about from a relatively low temperature of the methanol flame. The decrease of NO_X emissions from the flue gas results from the addition of methanol to the flame, which is conducive to suppressing the formation of NO of both the thermal and intermediate type. **Key words**: syngas, methanol, mixing-dilution combustion, NO_X

湿法脱硫的传质与化学平衡模型研究= Study of a Model Featuring Mass Transfer and Chemical Equilibrium for Wet Method-based Desulfuration[刊,汉]/ZHANG Xiao-dong, WANG Xiu-yan (College of Energy Source and Power Engineering, North China Electric Power University, Beijing, China, Post Code: 102206), ZHENG Yong-gang(College of Resources and Environmental Science, Chongqing University, Chongqing, China, Post Code: 400044)// Journal of Engineering for Thermal Energy & Power. - 2009, 24(2). -242~246

The technology of limestone-gypsum wet-method desulfuration by using a spray absorption tower is nowadays most widely used in coal-fired power plants. Inside the tower, the sprinkling liquid droplets will fall in an inverse direction against the rising flue gas flow to absorb SO₂ in the flue gas. Based on a steady-state assumption, the authors analyzed the equilibrium relationship between the chemical reaction process in the droplets and liquid-phase constituents, and also presented a model featuring the dissolution velocity of solid CaCO₃. By employing a total mass transfer coefficient, set up was a mass transfer rate model for droplet absorption-phase constituents. Through an analysis of the material quantity equilibrium of various components between the gas and liquid phases, established was an equilibrium equation for the controlled volume in the absorption zone. The model in question can provide guidance for relevant engineering applications, and can also be used for the emulation calculation of absorption towers and flow-field numerical simulation calculations. **Key words**: absorption tower, flue gas desulfuration, controlled volume, mass transfer rate

利用 CFD 技术对城市生活垃圾富氧燃烧特性分析= Research on the Characteristics of MSW (Municipal Solid Waste) Oxygen-enriched Combustion Based on Computational Fluid Dynamics[刊,汉]/LIU Guo-hui, MA Xiaoqian, YU Zhao-sheng (College of Electric Power, South China University of Technology, Guangzhou, Post Code: 510640)// Journal of Engineering for Thermal Energy & Power. - 2009, 24(2). - 247 ~ 251

The oxygen-enriched combustion technology enjoys conspicuous benefits of energy-saving and environment protection, and represents an effective measure for achieving a steady combustion of low-heat-value wastes and reducing pollutant emissions. By employing CFD (Computational Fluid Dynamics) technology, studied were the characteristics of MSW (Municipal Solid Waste) combustion in the oxygen-enriched atmosphere of a mechanical stoker. The authors have presented the curves showing the flue gas temperature and constituent concentration over and above the waste-burning bed layer as well