文章编号:1001-2060(2009)02-0242-05

湿法脱硫的传质与化学平衡模型研究

张晓东1,郑永刚2,王修彦1

(1. 华北电力大学能源与动力工程学院,北京 102206; 2. 重庆大学资源及环境科学学院,重庆 400044)

摘 要:采用喷淋式吸收塔的石灰石—石膏湿法脱硫技术是 目前燃煤电站使用最广的脱硫工艺。在吸收塔内,喷淋的液 滴在上升的烟气中逆向下落,吸收烟气中的 SO2。基于稳态 假设,分析了液滴内的化学反应过程和液相成份的平衡关 系,以及固体 CaCO3 的溶解速率模型。采用总的传质系数, 建立了液滴吸收气相成份的传质速率模型。通过气液两相 之间各个成份的物量平衡分析,建立了吸收区的控制容积平 衡方程。该模型对工程应用具有指导意义,也可以进一步应 用于吸收塔的仿真计算和流场数值模拟计算。

关键 词:吸收塔;烟气脱硫;控制容积;传质速率

中图分类号: X701.3 文献标识码: A

引 言

目前,世界上应用最广泛的 SO₂ 脱除技术是石 灰石/石膏湿法烟气脱硫工艺,约占已投运烟气脱硫 (FGD)机组容量的 70%^[2],我国燃煤电站的烟气脱 硫比例将从 2005 年的 14%提高到 60%以上^[1]。湿 法脱硫过程是在吸收塔内完成的,主要有喷淋塔和 液柱塔两种工艺,本研究基于喷淋塔工艺流程:石灰 石(主要成份 CaCO₃)浆液由塔的上部喷淋成细小的 液滴下落,烟气自下向上逆向流动,液滴在下落过程 中吸收烟气中的 SO₂,落入塔底部的浆液池进行强 制氧化。脱硫反应总的效果,是烟气中的 SO₂ 置换 出 CO₂:

 $CaCO_3 + SO_2 + \frac{1}{2}O_2 + 2H_2O = CaSO_4 \circ 2H_2O + CO_2$

对于采用喷淋塔工艺进行脱硫的原理和数学模型, 国外已进行了较多的研究^{[3~9}。这些研究着眼 于传质和化学反应过程, 建立 SO₂ 吸收和 CaCO₃ 溶 解的数学模型, 主要分析一些设计参数如吸收区高 度、浆液流量和液滴粒径分布以及石灰石细度等参 数对于脱硫效率的影响。近年来, 国内也开展了相 关的理论研究工作^{[7~8}, 通过建立液滴吸收 SO₂ 的 简化模型, 进行脱硫效率的计算和系统仿真。同时, 利用 CFD 技术进行喷淋塔流场模拟和设计优化的 工作也受到很大重视¹⁹,但国内的研究主要在于气 液流场模拟方面,对于完整脱硫模型的研究仍处于 起步阶段。

本研究对象是喷淋塔内吸收区的气液传质和化 学反应过程,根据传质理论和物质平衡分析,建立适 于系统仿真计算和流场模拟分析的吸收区控制容积 模型。实际的电站脱硫装置通常是连续稳定运行 的,因此本研究基于稳态假设。

1 液滴内的化学反应过程

利用石灰石浆液吸收烟气中的 SO₂ 涉及复杂的 传质和化学反应过程,生成多种中间产物,很难精确 描述,其大致过程是:气相中的 SO₂ 被液滴 (H₂O)吸 收溶解,分离成 SO₃²⁻和两个 H⁺离子;浆液中的固 态 CaCO₃ 溶解之后分离成 Ca²⁺和 CO₃²⁻离子; SO₃²⁻ 被溶解于浆液的 O₂ 快速氧化为 SO₄²⁻, SO₄²⁻与 Ca²⁺ 结合两个水分子最后结晶为石膏 (主要在浆液池内 完成); CO₃²⁻结合两个 H⁺生成水和 CO₂ 从而稳定 浆液的 pH 值。浆液的 pH 值(即 H⁺离子浓度)对于 SO₂和 CO₂ 的溶解度、存在形态和 CaCO₃ 的溶解都 有很大影响。较大的 pH 值有利于 SO₂ 的吸收,但不 利于 CO₂ 的释放。通常喷淋塔浆液的 pH 值在 4~6 左右。

假定液滴中的离子处于反应平衡状态,用 C_{g} 、 C_{l} 和 C_{s} 分别表示某种成份在气相中、在浆液中和 固体成份在浆液中的摩尔浓度(kmol/m³)。对于液 相,考虑如下化学过程:

$$H_{2}O \stackrel{K_{W}}{\leftrightarrow} H^{+} + OH^{-}, K_{W} = C_{l, H^{+}} \circ C_{l, OH^{-}}$$
(1)
$$SO_{2} + H_{2}O \stackrel{K_{SI}}{\leftrightarrow} H^{+} + HSO_{3}^{-}, K_{S1} = \frac{C_{l, H^{+}} \circ C_{1, HSO_{3}^{-}}}{C_{l, SO_{2}}}$$
(2)

收稿日期: 2008-01-14; 修订日期: 2008-12-10

作者简介:张晓东(1969-).男.辽定凌海人,华北电力大学副教授Publishing House. All rights reserved. http://www.cnki.net

$$HSO_{3}^{-} \stackrel{K_{S2}}{\leftrightarrow} H^{+} + SO_{3}^{2-}, K_{S2} = \frac{C_{\rm h} H^{+} \circ C_{\rm h} SO_{3}^{2-}}{C_{\rm h} HSO_{3}^{-}} \qquad (3)$$
$$CO_{2} + H_{2}O \stackrel{K_{\rm CI}}{\leftarrow} H^{+} + HCO_{3}^{-}, K_{\rm CI} = \frac{C_{\rm h} H^{+} \circ C_{\rm h} HO_{3}^{-}}{C_{\rm h} CO_{2}} \qquad (4)$$

$$HCO_{3}^{-} \stackrel{K_{C2}}{\leftarrow} H^{+} + CO_{3}^{2^{-}}, K_{C2} = \frac{C_{\rm k} H^{+} \circ C_{\rm k} CO_{3}^{2^{-}}}{C_{\rm k} HCO_{3}^{-}} \qquad (5)$$

 K_{W} 、 K_{S1} 、 K_{S2} 、 K_{C1} 和 K_{C2} 是化学反应平衡常数, $kmol/m^3$ 。为了分析方便,引入两个描述液滴中含硫 成份和含碳成份总浓度的变量^[6].

$$Q_{\rm S} = C_{\rm k} \, {\rm so}_{2} + C_{\rm k} \, {\rm Hso}_{3}^{-} + C_{\rm k} \, {\rm so}_{3}^{2-} = C_{\rm k} \, {\rm so}_{2} \times \left(1 + \frac{K_{\rm S1}}{C_{\rm k} \, {\rm H}^{+}} + \frac{K_{\rm S1} \, {}^{\circ} K_{\rm S2}}{C_{\rm k}^{2} \, {\rm H}^{+}}\right)$$

$$Q_{\rm C} = C_{\rm k} \, {\rm co}_{2} + C_{\rm k} \, {\rm Hco}_{3}^{-} + C_{\rm k} \, {\rm co}_{3}^{2-} = C_{\rm k} \, {\rm co}_{2} \times \left(1 + \frac{K_{\rm C1}}{C_{\rm k} \, {\rm H}^{+}} + \frac{K_{\rm C1} \, {}^{\circ} K_{\rm C2}}{C_{\rm k}^{2} \, {\rm H}^{+}}\right)$$
(6)
$$(7)$$

若已知 $Q_{\rm C}$ 、 $Q_{\rm S}$ 和 H⁺离子浓度,则可以依据平 衡常数确定式(2)~式(5)中各成份浓度。 $Q_{\rm C}$ 的变 化源于 $CaCO_3$ 的溶解和气液之间 CO_2 的传质。 Q_s 的增加源于液滴对 SO₂ 的吸收,其减少源于 SO₃²⁻ 的 氧化:

 $SO_3^{2-} + \frac{1}{2}O_2 \rightarrow SO_4^{2-}$

相对于其它反应,亚硫酸根的氧化反应是快速 而不可逆的,因此液滴中 O_2 的浓度和 SO_3^{2-} 离子的 浓度必有一个等于零而不能同时大于零。引入两个 辅助变量:

 $T_0 = 2C_{l,0_2} + C_{l,S0_4}^{2-}$ (8)

$$T_{\rm S} = Q_{\rm S} + C_{\rm l, \, SO_4^{2-}} \tag{9}$$

若 $C_{1,0} > 0$, 必有 $C_{1,50}^{2-} = 0$, 反应平衡时必有 Qs=0, To>Ts; 否则, 若 Qs>0, 必有 Ci.o,=0, To< Ts; Cl, o, 或 Qs 必有一个为零, 因此:

$$C_{10_2} = \frac{1}{2} \max(T_0 - T_S, 0) \tag{10}$$

 $O_{\rm S} = \max(T_{\rm S} - T_0, 0)$ (11)

$$C_1 \operatorname{so}^{2-} = \min(T_0, T_S)$$
 (12)

在液滴下落这段时间内,液滴中固体 CaCO3 的 溶解是相对较慢的反应过程,主要受到液滴内 H⁺ 离子浓度的控制和固体颗粒细度的影响。参考文献 [10] 的数学模型,采用如下 CaCO3 溶解速率方程:

$$\frac{dC_{S, CaCO}}{dL_{s}} = S_{r} \circ k \circ (C_{l, H}^{+} - C_{l, H}^{*})$$

 $C_{1,H^{+}}$ 、 $C_{1,H^{+}}^{*}$ 一液滴主体和颗粒表面 H⁺离子的浓 度, kmol/m³, 通常 $C_{l, H}^{+} \gg C_{l, H}^{*+}$, 简化分析时可取 $C_{l,H}^{*} = 0$; S_r一单位体积液滴内固体颗粒的表面积, m^2/m^3 ,若液滴内固体颗粒均为半径为r的球体,则.

$$S_{r0} = \frac{3C_{S, CaCO_3}}{\rho_{m} \circ r}$$

式中: $\rho_{\rm m}$ 一固体颗粒的摩尔密度, kmol/m³。由于颗 粒形状和表面的不规则性,实际的颗粒表面积比 S_{r0} 要大, 需除以小于 1 的球形度 ε , 则:

 $S_r = S_{r0}/\epsilon$

k 是溶解速率常数, m/s, 近似等于 H⁺离子由 液滴主体向颗粒表面的传质系数 k1H+。将液滴内 视为滞流介质^[11], 舍伍德数 $sh \, rac{k_{1.\,\mathrm{H}^+} \, ^\circ 2\mathrm{r}}{D_{1.\,\mathrm{H}^+}} = 2,$ 即 $k_{1.\,\mathrm{H}^+}$ $=rac{D_{1
m H}^+}{r}$ 。式中 $D_{1
m H}^+$ 是 ${
m H}^+$ 离子在液滴内的质扩散 系数,则:

$$-\frac{\mathrm{d}C_{\mathrm{S}}\,\mathrm{caco}_{3}}{\mathrm{d}t} = \frac{3C_{\mathrm{S}},\mathrm{caco}_{3}}{\rho_{\mathrm{m}}\circ r\circ\sigma}\circ k_{\mathrm{I}}\,\mathrm{H}^{+}\circ C_{\mathrm{L}}\,\mathrm{H}^{+} \qquad (13)$$

2 气液相之间的传质过程

对于气相考虑 SO_2 、 CO_2 和 O_2 3 种成份与液滴之 间的传质过程。气相成份向液相的传质过程包括气 相阻力、气液界面阻力和液相阻力、其中气液界面的 传质阻力可以忽略^[12]。对于 SO₂,采用总的传质系 数,则从气相到液相的传质速率为:

$$n_{SO_2} = k_{g,SO_2} \circ A \circ (C_{g,SO_2} - C_{g,SO_2})$$
(14)

式中: n_{SO_2} 一传质速率, kmol/s; A一气液接触面积, m^2 ; C_{g,SO_1} 、 C_{g,SO_2}^* —SO2 的气相浓度和液相浓度对应 的气相平衡浓度:

$$C_{g \ SO_{2}}^{*} = H_{SO_{2}} \circ C_{l \ SO_{2}} = H_{SO_{2}} \circ Q_{S} \times$$

$$\left(1 + \frac{K_{S1}}{C_{l \ H^{+}}} + \frac{K_{S1} \circ K_{S2}}{C_{l \ H^{+}}^{2}}\right) = H_{SO_{2}} \times$$

$$\left(1 + \frac{K_{S1}}{C_{l \ H^{+}}} + \frac{K_{S1} \circ K_{S2}}{C_{l \ H^{+}}^{2}}\right) \circ \max(T_{S} - T_{0}, 0)$$
(15)

式中: Hso, 一亨利常数, 为无量纲数, 定义为气相平 衡浓度和液相浓度之比,具体数值可参见文献[13]。

 $k_{\rm g}$ so₂为总的传质系数, m/s, 定义为:

$$k_{\mathfrak{g}} \operatorname{so}_{2} = \left(\frac{1}{\beta_{\mathfrak{g}} \operatorname{so}_{2}} + \frac{H \operatorname{so}_{2}}{\beta_{\mathfrak{h}} \operatorname{so}_{2} \circ E \operatorname{so}_{2}}\right)^{-1}$$
(16)

式中: $\beta_{\mathfrak{g}}$ so, $\beta_{\mathfrak{l}}$ so, 一气相和液相的传质系数。对于 气相传质系数,可通过舍伍德数计算,

式中: C_{S CaCO}, 一液滴中 CaCO₃ 的摩尔浓度, kmol/m³; ?1994-2018 China Academic Journal Electronic Pu

$$sh = \frac{\beta_{g, SO_2} \circ d}{D_{g, SO_2}}$$

式中: d 一液滴直径, m; $D_{g SO_2}$ —SO₂ 在气相中的质扩 散系数, m^2/s 。对于球形液滴在气体中掠过的情形, 广泛使用的准则方程是¹⁴:

$$sh=2+0.6Re_{\rm d}^{1/2} \circ Sc^{1/3}$$
 (17)

液相中 SO_2 的传质系数采用下式计算^[14]:

$$\beta_{\rm l, so_2} = 0.88 (f \circ D_{\rm l, so_2})^{1/2}$$
 (18)

式中: $f = (8\sigma/3\pi m)^{1/2}$; σ 一液滴的表面张力系数, N/m; m一液滴的质量, kg。

系数 *E*₅₀₂是考虑液滴内化学反应强化传质的经验系数,也是对 SO2 溶于水不完全遵守亨利定律的一种修正。

对于 CO₂ 和 O₂, 可以写出和式(14)、式(16) ~式 (18)类似的方程, 只需用 CO₂ 和 O₂ 的相应参数替换 即可, 这里不再重复。 CO₂ 和 O₂ 的液相浓度对应的 气相平衡浓度分别为:

$$C_{g,C_{0}}^{*} = H_{C_{0}} \circ C_{L_{C_{0}}} = H_{C_{0}} \circ Q_{C} \times \left(1 + \frac{K_{C_{1}}}{C_{1,H^{+}}} + \frac{K_{C_{1}} \circ K_{C_{2}}}{C_{1,H^{+}}^{2}}\right)^{-1}$$
(19)

$$C_{g,0_2}^* = H_{0_2} \circ C_{b,0_2} = H_{0_2} \circ \frac{1}{2} \max(T_0 - T_S, 0)$$
 (20)

3 吸收区控制容积模型

图1 喷淋塔内的控制容积

在液滴内化学反应平衡分析和气液传质过程分 析的基础上,可以建立吸收塔喷淋区气相成份 SO2、 CO2、O2 和液相中固体成份 CaCO3、Ca⁺ 离子以及 *Q*c、*T*0、*T*s 的控制容积平衡模型,加之以确定的边 界条件即可求解。在喷淋区取一控制容积,如图 1 所示,这里假定喷淋塔稳态运行,且不考虑液滴的蒸 发、温度变化和碰撞、破裂,因此控制容积内液滴的 数目、形态和状态都是确定的,不随时间变化,控制 容积内的液相和气相成份分别均匀恒定。流入控制 容积的液体和气体流量分别为 L_{in} 和 G_{in} , m³/s, 液相 和气相中各个成份的浓度由所来相邻控制容积确定 或进行加权平均。流出控制容积的液体和气体流量 为 L_{out} 和 G_{out} , 液相和气相中各个成份的浓度与本控 制容积内参数相同。设控制容积的体积为V, 控制 容积内液滴的总体积为 V_{i} , 气液接触面积为 A_{in} , 液 滴相对于气体的流速为 v_{rel} 。

对于气相成份 SO₂,单位时间内流入、流出控制体的摩尔量之差等于单位时间内控制体内液滴表面 所吸收的摩尔量:

 $G_{\text{in}} \circ C_{g, SO_2, \text{in}} - G_{\text{out}} \circ C_{g, SO_2} = k_{g, SO_2} \circ A_{\text{in}} \circ (C_{g, SO_2} - C_{g, SO_2})$

可得:

$$C_{g} \operatorname{so}_{2} = \frac{G_{\operatorname{in}} \circ C_{g} \operatorname{so}_{2}, \operatorname{in} - k_{g} \operatorname{so}_{2} \circ A_{\operatorname{in}} \circ C_{g}, \operatorname{so}_{2}}{G_{\operatorname{out}} + k_{g} \operatorname{so}_{2} \circ A_{\operatorname{in}}} \qquad (21)$$

同理,对于气相成份 CO₂ 和 O₂,可以写出类似的控制容积平衡方程:

$$C_{g \text{ CO}_{2}} = \frac{G_{\text{in}} \circ C_{g \text{ CO}_{2}, \text{ in}} - k_{g \text{ CO}_{2}} \circ A_{\text{in}} \circ C_{g, \text{ CO}_{2}}}{G_{\text{out}} + k_{g \text{ CO}_{2}} \circ A_{\text{in}}}$$
(22)

$$C_{g 0_2} = \frac{G_{\text{in}} \circ C_{g 0_2} \cdot \text{in} - k_{g 0_2} \circ A_{\text{in}} \circ C_{g 0_2}}{G_{\text{out}} + k_{g 0_2} \circ A_{\text{in}}}$$
(23)

其中的液相平衡浓度 C_{g}^{*} 分别通过式(15)、式(19) 和式(20)由液相成份 Q_{C} 、 T_{S} 和 T_{O} 决定。下面考察 液相成份的平衡。对于 CaCO₃ 颗粒,单位时间内流 入、流出控制体的量分别为 L_{in} ° $C_{S, CaCO_{3}, in}$ 和 L_{out} ° $C_{S CaCO_{3}, in}$ 单位时间内在控制体内溶解的摩尔量为

 $\frac{3C_{\rm S, CaCO_3}}{\rho_{\rm m} \circ r \circ \sigma} \circ k_{1 \rm H^+} \circ C_{\rm L} {}_{\rm H^+} \circ V_{\rm I}$, 三者平衡, 可得:

$$C_{\text{S} cam}_{3} = \frac{L_{\text{in}} \circ C_{\text{S}, caco_{3}, \text{in}}}{L_{\text{out}} + \frac{3}{\rho_{\text{m}} \circ r \circ \sigma} \circ k_{\text{I}, \text{H}^{+}} \circ C_{1 \text{H}^{+}} \circ V_{\text{I}}} \qquad (24)$$

液滴内 Ca²⁺ 离子的增量来自于固体 CaCO3 的 溶解,单位时间内流出、流入控制体的 Ca²⁺离子摩 尔量之差等于控制体内溶解的 CaCO3 的摩尔量,则:

$$C_{\rm h, Ca^{2+}} = \frac{L_{\rm in} \circ C_{\rm l} \, {\rm ca^{2+}} + \frac{3 C_{\rm S} \, {\rm caco}_3}{\rho_{\rm m} \circ r \circ \sigma} \circ k_{\rm l, H^+} \circ C_{\rm l} \, {\rm H^+} \circ V_{\rm l}}{L_{\rm out}}$$

(25)

石膏的结晶主要是在浆液池内完成的,在喷淋 区不予考虑。

液滴中 Qc 的增加来自于液滴对气相 CO₂ 的吸 收和液滴内固体 CaCO₃ 的溶解两部分,控制容积内 液滴自气相吸收的 CO₂ 为:

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

$$k_{g,CO_2} \circ A_{in} \circ \left(C_{g,O_2} - H_{O_2} \circ Q_C \circ \left(1 + \frac{K_C}{C_{i,H^+}} + \frac{K_C}{C_{i,H^+}} \right)^{-1} \right)$$

可得 Q_C 的控制容积平衡方程为:
 $Q_C =$

$$\frac{Q_{\text{G, in}} \circ L_{\text{in}} + k_{\text{g, SO}_{2}} \circ A_{\text{in}} \circ C_{\text{g, CO}_{2}} + \frac{S_{\text{CS, CalO}_{3}}}{\rho_{\text{m}} \circ r \circ \sigma} \circ k_{1 \text{H}^{+}} \circ C_{\text{h, H}^{+}} \circ V_{1}}{L_{\text{out}} + k_{\text{g, CO}_{2}} \circ A_{\text{in}} \circ H_{\text{CO}_{2}} \circ \left(1 + \frac{K_{\text{CI}}}{C_{1 \text{H}^{+}}} + \frac{K_{\text{CI}} \circ K_{\text{C2}}}{C_{1}^{2} \text{H}^{+}}\right)^{-1}}$$

(26)

液相成份 T_0 和 T_s 的取值相互关联,需要同时 加以考虑。在控制容积内, T_s 的增量来源于液滴对 气相 SO₂ 的吸收,其物量平衡方程为:

$$L_{\text{in}} \circ T_{\text{S} \text{in}} + k_{\text{g}}_{\text{CO}_{2}} \circ A_{\text{in}} \circ (C_{\text{g}}_{\text{SO}_{2}} - H_{\text{SO}_{2}} \times \left(1 + \frac{K_{\text{S1}}}{C_{1, \text{H}^{+}}} + \frac{K_{\text{S1}} \circ K_{\text{S2}}}{C_{1, \text{H}^{+}}^{2}}\right)^{-1} \circ \max(T_{\text{S}} - T_{0, 0})) = L_{\text{C}} \circ T_{\text{C}}$$

$$L_{out} \circ T$$

今.

$$\alpha_{\rm S} = k_{\rm g, SO_2} \circ A_{\rm in} \circ H_{\rm SO_2} \circ \left[1 + \frac{K_{\rm S1}}{C_{\rm 1, H^+}} + \frac{K_{\rm S1} \circ K_{\rm S2}}{C_{\rm 1, H^+}^2} \right]^{-1}$$

$$\beta_{\rm S} = L_{\rm in} \circ T S_{\rm in} + k_{\rm g, SO_2} \circ A_{\rm in} \circ C_{\rm g, SO_2}$$

则上式可改写为:

$$\beta_{\rm S} = \alpha_{\rm S} \circ_{\rm max} (T_{\rm S} - T_O, 0) + L_{\rm out} \circ T_{\rm S}$$

控制容积内, To 的增量来源于液滴对 O2 的吸收, 令:

$$\beta_0 = L_{\text{in}} \circ T_{\text{O}, \text{in}} + k_{g O_2} \circ A_{\text{in}} \circ C_{g O_2}$$

$$\alpha_0 = \frac{1}{2} k_{g O_2} \circ A_{\text{in}} \circ H_{O_2}$$

则控制容积内的物量平衡方程为:

 $\beta_0 = \alpha_0 \circ_{\max} (T_0 - T_S, 0) + L_{out} \circ T_0$

对于本控制容积, β_s 和 β_o 是由边界来流和控制容积内的气相成份确定的。首先, 若有 $\beta_s > \beta_o$, 则必有 $T_s > T_o$, 因为如果 $T_s < T_o$, 则有:

 $\beta_{\rm S} = \alpha_{\rm S} \circ_{\rm max} (T_{\rm S} - T_{\rm O}, 0) + L_{\rm out} \circ T_{\rm S} = L_{\rm out} \circ T_{\rm S} < \alpha_{\rm O} \circ_{\rm max} (T_{\rm O} - T_{\rm S}, 0) + L_{\rm out} \circ T_{\rm O} = \beta_{\rm O}$

反之亦然, 即若有 $\beta_s \leqslant \beta_0$, 则必有 $T_s \leqslant T_0$ 。由此可以按下面的方式确定 T_s 和 T_0 。

若β₅>β₀,有:

$$\beta_0 = L_{\text{out}} \circ T_0 \Rightarrow T_0 = \frac{\beta_0}{L_{\text{out}}}$$
(27)

$$\beta_{\rm S} = \alpha_{\rm S} \circ (T_{\rm S} - T_{\rm O}) + L_{\rm out} \circ T_{\rm S} \Rightarrow T_{\rm S} = \frac{\beta_{\rm S} + \alpha_{\rm S} \circ T_{\rm O}}{L_{\rm out} + \alpha_{\rm S}}$$
(28)

若
$$\beta_{s} \leqslant \beta_{0}$$
,则:
 $T_{s} = \frac{\beta_{s}}{L_{out}}$
(29)

$$T_0 = \frac{\beta_0 + \alpha_0 \circ T_{\rm S}}{L_{\rm out} + \alpha_0} \tag{30}$$

上面建立了控制容积内关于变量 C_{gSO_2} 、 C_{gCO_2} 、 C_{gO_2} 、 C_{SCaCO_3} 、 $C_{1Ca^{2+}}$ 、 Q_C 、 T_S 、 T_0 的物量平 衡方程,若已知控制容积内液滴的 pH 值,则方程组 封闭,可以进行求解。由于方程相互偶合,求解可迭 代进行。

4 浆液 pH 值的计算

吸收塔内石灰石浆液的 pH 值是一个重要的设 计参数,在运行中可以通过新鲜石灰石浆液的注入 量进行调节。本文认为液滴内 H⁺离子的浓度主要 是由式(4)和式(5)的化学反应决定的,而且式(4)的 反应起决定性作用^[14],于是:

$$C_{\rm k \, H^{+}} = (K_{\rm Cl} \, {}^{\circ}C_{\rm k \, CO_{2}})^{1/2} = \\ \left(K_{\rm Cl} \, {}^{\circ}\frac{Q_{\rm C}}{1 + \frac{K_{\rm Cl}}{C_{\rm k \, H^{+}}} + \frac{K_{\rm Cl} \, {}^{\circ}K_{\rm C2}}{C_{\rm k \, H^{+}}^{2}}}\right)^{V2}$$
(31)

方程需采用迭代的方式计算,即等式右边的 *C*_{1,H}+取上次的计算结果,对等式左边的*C*_{1,H}+值进 行更新。喷嘴出口处浆液的 pH 值可参照新鲜石灰 石浆液的数值,或按下式估算:

$$C_{\rm l, H^+}^{\rm i} = \sqrt{K_{\rm W}} \tag{32}$$

5 结 论

通过分析喷淋式吸收塔液滴内的化学反应过程 和气液两相之间的传质过程,建立了喷淋区的控制 容积平衡模型。对喷淋区进行离散化,即可利用该 模型计算气相和液相中各个成份的浓度分布。采用 上述方法,建立了某电厂 200 MW 机组的喷淋式吸 收塔吸收区的一维数值计算模型,利用验收测试的 参数条件对气、液两侧各主要成份的浓度变化进行 了分析计算,脱硫效率的计算结果为96.61%,与验 收测试结果的 96.7%相接近,表明,采用该模型进 行的分析对工程实际有指导意义。该模型还可以应 用于脱硫系统仿真计算和流场数值模拟(CFD)计 算。由于吸收塔内烟气体积流量较大而浆液体积流 量相对较小,不适于两相流分析,因此建立液滴吸收 模型是十分必要的。本文的分析限于化学反应和传 质,没有涉及气液相之间的动量传递、传热和液滴蒸 发,这些因素对传质过程有一定影响。此外,模型计 算与实际的接近程度,还和固态石灰石粒径分布、喷

?1994-2018 China Academic Journal Electronic Publishing House. Aff rights reserved. "http://www.cnki.net

° 246 °

淋液滴的形状和尺度分布的估计有关。

参考文献:

- [1] 王志轩.火电厂二氧化硫控制问题及对策[J].中国电力企业管
 理.2006(10):27-29
- [2] 韩 琪,李忠华. 石灰石/石膏湿法烟气脱硫的化学过程研究 [J]. 电力环境保护, 2002, 18(1):1-3.
- $\label{eq:scalar} [3] $$BROGREN G KARLSSON H T.Modeling the absorption of SO_2 in a spray scrubber using the penetration theory[J]. Chemical Engineering Science 1997, 52(18): 3085-3099$
- [4] AKBAR M K, GHIAASIAAN S M. Modeling the gas absorption in a spray scrubber with dissolving reactive particles[J]. Chemical Engineering Science, 2004, 59(5): 967-976
- [5] SOREN KIII, HELLE NYGAA RD, JOHNSSON J E. Simulation studies of the influence of HCl absorption on the performance of a wet flue gas desulphurisation pilot plant[J]. Chemical Engineering Science 2002, 57(3); 347-354.
- [6] DESCH W, HORN K. PROPST G. Computation of equilibrium in models of flue gas washer plants[J]. Computers and Chemical Engineering, 2006, 30(6-7): 1169-1177.

- [7] 杨运华. 石灰石湿法脱硫反应的动力学数学模型与求解[J]. 工 程设计与研究, 2006 120(12): 25-28.
- [8] 陈鸿伟, 牛治国, 高建强. 烟气脱硫喷淋塔实时仿真模型研究 [J]. 电站系统工程, 2006 22(4): 4-6.
- [9] 林永明, 高 翔, 俞保云. 计算流体力学 (CFD) 在大型湿法烟气 脱硫系统中的研究与应用进展[J]. 热力发电. 2005, 12: 34-37.
- [10] SHIH S M, LIN J P, SHIAU G Y. Dissolution rates of limestones of different sources[J]. Journal of Hazardous Materials, 2000, 79 (1): 159-171.
- [11] 钟 秦, 刘爱民. 湿法烟气脱硫中石灰石溶解特性[J]. 南京理 工大学学报, 2000, 24(6): 561-564.
- [12] BAEHR H D, STEPHAN K. Heat and mass transfer, Second, revised edition[M]. Berlin: Springer, 2006
- [13] SANDER R. Compilation of henry's law constants for inorganic and organic species of potential Importance in environmental chemistry (Version 3)[Z]. http://www.henrys-law.org 1999
- [14] GOMEZ A, FUEYO N, TOMAS A. Detailed modeling of a flue-gas desulfurisation plant[J]. Computers and Chemical Engineering, 2007, 31: 1419–1431.

(编辑 韩 锋)

新技术、新工艺

小流量工况对汽轮机末级动叶的侵蚀

据《Эпект Інческие Станции》2007年4月号报道,通常,冷凝式汽轮机末级动叶进汽边侵蚀磨损的程度通常随着接近顶部沿叶片高度增加,这是由于决定叶片与水滴碰撞的轮周速度和有侵蚀危险的湿汽质量向外缘增加造成的。

除了工作蒸汽流的湿汽参与末级动叶进汽边的侵蚀外,在小流量工况时还有来自排汽管的蒸汽回流的 湿汽参与了侵蚀,并且回流湿汽侵蚀作用的强度很大。随着启动次数增加,侵蚀磨损更趋严重。

必须采取补救措施,防止湿汽随着从排气管的蒸汽回流落到末级叶片上。为此,不仅要给排汽管的内锥,而且还要给它的分隔肋和其它构件装备防水护板。

为了减弱由级后扭转汽流激发的回流,给排汽管的纵向分隔肋打孔是合理的。

(吉桂明 供稿)

to be solved for using low-heat-value fuels. Key words: biomass, low heat value, miniature gas turbine

合成气-甲醇掺烧火焰研究=Investigation of Mixing-dilution Combustion Flames of Syngas-methanol[刊,汉]/ ZHANG Wen-xing, MU Ke-jin, WANG Yue, et al (Key Laboratory on Advanced Energy and Power, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China, Post Code: 100190)// Journal of Engineering for Thermal Energy & Power. — 2009, 24 (2). — 236 ~ 241

An experimental study and numerical analysis was performed of the mixing-dilution combustion flames of syngasmethanol. During the experiment, the flame morphology was observed, and the flame temperature as well as the concentration of NO_X pollutants in the flue gas were measured. The test results show that under the condition of an equal power output, the shape of the mixing-dilution combustion flame of the syngas-methanol seems slightly slender as compared with that of a syngas flame, the temperature in the high-temperature zone is a bit low and the NO_X emissions from the flue gas are comparatively small. A numerical calculation and analysis shows that the mixing-dilution combustion flame in question becomes longer, because the methanol in the flame has not been burnt out in time, and the drop of flame temperature comes about from a relatively low temperature of the methanol flame. The decrease of NO_X emissions from the flue gas results from the addition of methanol to the flame, which is conducive to suppressing the formation of NO of both the thermal and intermediate type. **Key words**: syngas, methanol, mixing-dilution combustion, NO_X

湿法脱硫的传质与化学平衡模型研究= Study of a Model Featuring Mass Transfer and Chemical Equilibrium for Wet Method-based Desulfuration[刊,汉]/ZHANG Xiao-dong, WANG Xiu-yan (College of Energy Source and Power Engineering, North China Electric Power University, Beijing, China, Post Code: 102206), ZHENG Yong-gang(College of Resources and Environmental Science, Chongqing University, Chongqing, China, Post Code: 400044)// Journal of Engineering for Thermal Energy & Power. - 2009, 24(2). -242~246

The technology of limestone-gypsum wet-method desulfuration by using a spray absorption tower is nowadays most widely used in coal-fired power plants. Inside the tower, the sprinkling liquid droplets will fall in an inverse direction against the rising flue gas flow to absorb SO₂ in the flue gas. Based on a steady-state assumption, the authors analyzed the equilibrium relationship between the chemical reaction process in the droplets and liquid-phase constituents, and also presented a model featuring the dissolution velocity of solid CaCO₃. By employing a total mass transfer coefficient, set up was a mass transfer rate model for droplet absorption-phase constituents. Through an analysis of the material quantity equilibrium of various components between the gas and liquid phases, established was an equilibrium equation for the controlled volume in the absorption zone. The model in question can provide guidance for relevant engineering applications, and can also be used for the emulation calculation of absorption towers and flow-field numerical simulation calculations. **Key words**: absorption tower, flue gas desulfuration, controlled volume, mass transfer rate

利用 CFD 技术对城市生活垃圾富氧燃烧特性分析= Research on the Characteristics of MSW (Municipal Solid Waste) Oxygen-enriched Combustion Based on Computational Fluid Dynamics[刊,汉]/LIU Guo-hui, MA Xiaoqian, YU Zhao-sheng (College of Electric Power, South China University of Technology, Guangzhou, Post Code: 510640)// Journal of Engineering for Thermal Energy & Power. - 2009, 24(2). - 247 ~ 251

The oxygen-enriched combustion technology enjoys conspicuous benefits of energy-saving and environment protection, and represents an effective measure for achieving a steady combustion of low-heat-value wastes and reducing pollutant emissions. By employing CFD (Computational Fluid Dynamics) technology, studied were the characteristics of MSW (Municipal Solid Waste) combustion in the oxygen-enriched atmosphere of a mechanical stoker. The authors have presented the curves showing the flue gas temperature and constituent concentration over and above the waste-burning bed layer as well