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= Application and Development of End-wall Profiling in Turbomachinery
[ » 1/1U Jialing, CHU Wu-li, LIU Zhi-wei (College of Power and Energy Source, Northwest China Polytechnic Uni-
versity, Xi’ an, China, Post Code: 710072), ZHU Jun-qiang (Engineering Thermophysics Research Institute, Chinese A-
cademy of Sciences, Beijing, China, Post Code: 100190)// Journal of Engineering for Thermal Energy & Power. — 2009,
24(6).—687 ~691

Reviewed was the evolution of a new design technology-end-wall profiling technology, which can reduce secondary flow
losses in the zones around end-walls. The technology may enhance the thermal efficiency of a trbine, and has been widely
verified with relevant conclusions being adopted directly in engineering projects. Although the research for applying the
above technology in compressors is somehow delayed in comparison with that in turbines, the latest research findings show
that the technology has played a definite role in such efforts as changing the shock wave structure of a transonic compres-
sor, Improving its stable operating margin and reducing the separation of flows in the comers of stationary blades. The
techrology in question reflects the research tendency of utilizing complex profiles to enhance turbomachine performance,
and merits further study and investigation in the future by researchers. Key words: end-wall modeling, wurbomachinery,

turbine, compressor

CC = Experimental Study of Heat Transfer and Flow Resistance Charac-
teristics of CC (Cross Corrugated) Type Primary Surfaces] ., ]/MA Hu-gen (College of Power Engineering,
Shanghai University of Science and Technology, Shanghai, China, Post Code: 200093 ), DUAN Rui (College of Energy
Source and Environment Engineering, Shanghai University of Electric Power, Shanghai, China, Post Code: 200090)/ /Jour-
nal of Engineering for Thermal Energy & Power. — 2009, 24(6). —692 ~ 695

Described were the development of primaty surface heat transfer and the current status of its research both at home and
abroad . By adopting a single-blow transient method, the heat transfer and flow resistance characteristics of three kinds of
CC (cross corrugated ) type primary surfaces were experimentally studied. A mathematical model was established, and the
functional relationship among the fluid outlet temperature, time and N7U (number of transfer units ), obtained from m-
merical solutions. Through a proportioned matching, the NTU value of the heat exchange surface under the relevant mea-
surement conditions was determined with the test correlation of j and f for the three kinds of CC surface being obtained for
the first time. Both j and f factor decrease gradually with an increase of Re number, conforming with the general law fea-
turing the heat transfer and flow resistance performance of compact surfaces. Afier an error amalysis, the fit error obtained
from the test correlation being provided was assessed as not greater than 15 %, offering sufficient engineering precision.
The conditions for using the correlation are given as follows: Re =120 ~ 800, the equivalent diameter of the heat exchange
surface equals to 1.2 ~1.4 mm and the staggered angle ranges fiom 45 degrees to 75 degrees. By using the comprehen-
sive evaluation factor of j/ f; the performance of the three kinds of surface was analyzed. The research results show that the
pofile with a comparatively great width/ height ratio can secure a wmlatively good comprehensive performance. The data
thus obtained were also compared with the numerical simulation results of other academics both at home and abroad . The
test data are basically in agreement with the numerical simulation results. Key words: CC (Cwoss Corrugated) type prima-

ry surface, single-blowing transient change method, heat transfer and flow resistance characteristics, heat exchanger

= Numerical Simulation and Experimental Study of the Dy-
namic Characteristics of a Primary Surface Recuperator| ., |/LIU Zhenyu, SU Yongkang, CHENG Hui-er
(College of Mechanical and Power Engineering, Shanghai Jiaotong University, Shanghai, China, Post Code: 200240)//
Journal of Engireering for Thermal Energy &Power.— 2000, 24 (6). —696 ~ 699

Numerically analyzed and experimentally studied were the dynamic characteristics of a primary suiface recuperator (PSR)
when it undergoes a step change of flow rates. In the light of the energy conservation theory and structural features of the
PSR, a differential equation was derived, indicating a temperature change of the recuperator in an unsteady state between



