文章编号:1001-2060(2011)03-0271-04

回流式冷却叶片流热耦合数值分析

虞跨海¹, 王金生², 杨 茜³, 岳珠峰³

 (1.河南科技大学 规划与建筑工程学院,河南 洛阳 471003, 2 北京机械设备研究所,北京 100854, 3.西北工业大学 工程力学系,陕西 西安 710072)

摘 要: 建立了某型回流式涡轮冷却叶片流热耦合分析模型,采用 P-1辐射模型将辐射热流作为源项加入到方程中, 对未考虑辐射和考虑辐射的不带热障涂层冷却的叶片进行 了流热耦合分析,结果发现,占总燃气质量流量 3 76%的冷 却气体可以使回流式冷却结构对叶片的降温达到 200 K 在入口最高温度为 1 655 和 1 555 K时,通过对两种计算模 型下叶片温度分布的比较,发现辐射对叶片壁面温度的影响 具有显著性,回流式冷却叶片较易在尾缘叶尖位置形成最高 温度点。

关 键 词:燃气轮机;回热式冷却结构;流热耦合;辐射;冷 却叶片

中图分类号: TK472 5 文献标识码: A

引 言

随着燃气轮机性能的不断提高,涡轮前燃气入 口温度也随之不断提高,且已经远远超过了叶片材 料的耐受温度,这给叶片的设计带来了巨大的挑战。 目前,冷却叶片已应用于先进燃气轮机,结构也越来 越复杂,涡轮冷却叶片的设计已经成为燃气轮机研 制的关键^[1~2]。

研究表明,叶片工作温度每超过 28 ^K叶片的 寿命将会减半^[3],若不能准确得到叶片温度和压力 分布,将极大地影响强度、振动、寿命与可靠性等各 个学科分析的精度,甚至导致整个设计结果的不可 行。因此,提高涡轮冷却叶片这类复杂结构的气动 和传热分析精度,是燃气轮机设计研究的重要内 容^[4~\$]。然而传统的涡轮叶片设计中气动与传热分 析是分开的,这种分析方法不但设计周期长,而且在 数据相互传递时容易引起较大的误差,已经难以满 足现代高性能燃气轮机设计的需求。流热耦合分析 作为一种精度更高的分析方法,逐渐在涡轮叶片设 计中得到应用^[6~9]。但是,以往的流热耦合分析都

收稿日期: 2010-06-08, 修订日期: 2010-08-23

基金项目: 国家 "863"计划基金资助项目(2009^{AA}04^Z418),教育部博士点基金资助项目(N₆C.10001);河南省基础与前沿技术研究计划项目 (112300410166);河南科技大学博士科研启动基金资助项目(09001462) 作者简介: 虞跨海(1982-),男,浙江义乌人,河南科技大学讲师,博士.

是基于忽略辐射影响的假设,然而随着涡轮前燃气 温度的不断提高,辐射对叶片温度场的影响越来越 大,特别是第一级涡轮叶片暴露于燃烧室的高温环 境下,辐射对该级叶片温度分布的影响最大,然而在 这方面的研究却很少。贺志宏等通过分析发现在 1600 K时进口燃气总温增加 29.9%,入射辐射热 流密度将增加 188% ~212%^[10],但是没有研究对叶 片温度分布的影响;张丽芬等通过对直流冷却叶片 分析发现,考虑辐射后叶片温度明显升高^[11]。但是 这些分析是基于局部模型或简单叶片模型,其结果 尚不能直接应用于工程型号。

通过对某型回流式涡轮冷却叶片的三维流热耦 合分析,得到了涡轮叶片流动换热的数值计算结果, 对比了辐射对叶片温度场的影响,表明辐射使叶片 温度有较大幅上升,其对叶片温度场的影响不能忽 略,对叶片温度场精确分析以及叶片设计具有一定 的指导意义。

1 计算方法

1.1 模型描述

如图 1所示为回流式三维涡轮冷却叶片流热耦 合计算模型,包含了叶片叶身固体域、冷却通道流体 域和主燃气通道流体域 3个计算域,主燃气流道与 叶片之间、叶片与冷却通道之间存在着流固交界面, 主燃气流道的高温气体通过交界面与叶片发生热交 换,将热量传递给叶片,叶片再将热量传递给冷却通 道内的冷却气体,从而实现冷气对叶片的冷却。

1.2 控制方程

° 272°

流体域控制方程采用三维非定常 N-S方程, 对于固体域计算能量方程,分析过程中考虑了温度 对叶片材料性能的影响。在流体域和固体域交界面 上使用耦合边界条件,湍流模型采用 RNG k-ε模 型,近壁采用标准的壁面函数处理。

辐射热流计算采用 P-N模型中的 P-1辐射 模型。 P-N模型出发点是把辐射强度展开成正交 的球谐函数, P-1辐射模型只取正交球谐函数前 4 项,对于辐射热流 ^q可得到如下方程:

$$q = -\frac{1}{3(a+\sigma_s) - G_s} \nabla G = -\Gamma \nabla G \qquad (1)$$

C—线性各向异性相位函数系数; Γ =

<u>(3(a+σs)-Gs</u>。)。G的输运方程为:

$$\nabla (\Gamma \nabla G) + aG + 4 & T = S$$
 (2)
式中: σ -斯蒂芬一玻尔兹曼常数; S-用户定义的

辐射源相;使用 P-1模型时,通过求解该方程可以 得到当地辐射强度,结合式(1)和式(2),可得到:

$$-\nabla q = aG - 4 a f$$
 (3)

将 $-\nabla$ ^q的表达式可以直接代入能量方程,可 得到由于辐射所引起的热量源。

1.3 流热耦合边界条件

叶片计算模型包含了叶片叶身固体域、冷却通 道流体域和主燃气通道流体域 3个计算域,其计算 边界包括主燃气入(出)口、冷气入口、周期性边界 和绝热壁面等。在流体域和固体域交界面上,如图 2所示,在耦合面上满足边界连续性条件:

 $T_{\mathrm{fluid}} = T_{\mathrm{solid}} \circ K_{\mathrm{fluid}} \circ \bigtriangledown T \circ \eta_{\mathrm{fluid}} = K_{\mathrm{solid}} \circ \bigtriangledown T \circ \eta_{\mathrm{solid}}$ (4)

式中: T_{fuid}—合面上流体域温度; T_{solid}—耦合面上固 体域温度: K mid----耦合面上流体域导热系数: K_{solit}—耦合面上固体域导热系数。计算时设定燃气 和叶片、叶片和冷气交界面为耦合边界,在流场初始 化完成进入计算后, 交界面上自动满足上述连续性 边界条件。

2 回流式冷却叶片流热耦合计算

对回流式涡轮冷却叶片未考虑辐射和考虑辐射 模型两种情况进行了流热耦合分析,整个计算域初 始网格数约为 120万,采用四面体网格划分,如图 3 所示为叶身和冷却通道计算网格,对冷却通道出口 部位网格进行了加密。网格划分时,通过对计算域 间交界面的连接,保持了交界面上网格划分一致性, 避免了由于不同计算域之间交界面网格不一致造成 计算精度及计算效率降低的问题。

数值计算采用 Fluen软件完成,流体工质选用 可压缩理想气体,叶片材料为镍基单晶合金,考虑温 度对材料性能的影响,比热容和热传导系数为温度 的线性函数。主燃气进口给定总压、总温和进口气 流角度,入口温度沿叶片径向分布,入口总压为1 013 250 Pa气流入口角为 20°, 主燃气出口给定压 力边界条件,冷却通道进口给定流量、压力、温度,冷 气入口温度为 650 K 冷却气体出口不用给边界条 件,设定周期性边界条件。计算采用隐式耦合求解, 差分格式均选为二阶迎风格式。各方程进行亚松弛 处理。最终的收敛解的判断标准是能量残差小于 10^{-4} ,其它残差小于 10^{-3} ,并设定了叶身体积平均 温度残差小于 10⁻⁴,进出口流量守恒。初步计算完 成后,计算壁面 ^寸值,通过自适应进行网格调整,使 ^女值介于 20~100之间,再进行计算得到最终分析 结果。通过软件可直接输出叶身最高温度、叶身外 壁平均温度和总压损失量等参数。

图 3 主流道和冷却通道计算网格

)

3 计算结果

进行了在燃气入口最高总温为 1 655 和 1 555 K两种工况下不考虑辐射和考虑辐射影响的流热耦 合分析。表 1所示即为该两种工况下得到的气动与 传热参数结果对比。未考虑辐射影响的两种工况 下,叶片最高温度分别为 1 373 2 和 1 358 2 K降 温幅度分别为 281. 8 和 196 8 K叶片外壁平均温 度分别为 1 073 1 和 1 053 4 K体积平均温度分别 为 950 1 和 922 3 K 说明冷气的降温效果是显著 的,回流式冷却结构可以较大幅度地降低涡轮叶片 的工作温度。考虑辐射影响后,叶片最高温度分别 为1441.2和1414.5 以叶片外壁平均温度分别为 1267.2和1234.2 以体积平均温度分别为1127.8 和1091.7 以叶片最高温度、外壁平均温度、体积平 均温度均大幅度升高,其中辐射对叶片外壁面平均 温度的升高最显著,在两种工况下分别升高了 194.1 译和180.8 以而对压力损失的影响几乎可以 忽略。

表 1 叶片不同工况下流热耦合分析结果

	入口最高总温 /K	冷气流量 / k ^{g,} s−1	叶片最高温度 / K	外壁平均温度 /K	体积平均温度 /K	总压损失 / Pa	是否考虑辐射影响
工况一	1 655	0. 05	1 373 2	1 073 1	950 1	27 631 4	否
上况一	1 655	0. 05	1 441 2	1 267 2	1 127. 8	27 735 4	是
工况二	1 555	0. 05	1 358 2	1 053 4	922 3	27 580 4	否
工况二	1 555	0. 05	1 414 5	1 234 2	1 091. 7	27 685 5	是

图 4 两种模型下叶片截面表面温度分布

如图 4所示为入口温度为 1 655 K时两种计算 模型下,沿叶片径向不同高度截面表面温度分布曲 线,从图中可以看出,辐射对叶中位置壁面温度的影 响较小,对前缘和尾缘位置的影响较大,特别是叶片 前缘位置升温显著;辐射对叶根位置壁面温度的影 响较小,对叶尖位置温度的影响较大,叶片尾缘温度 要远远高于叶片前缘及其它位置的温度,而工程应 用中,冷却叶片往往在尾缘位置被烧蚀,可见流热耦 合分析能够较准确地得到叶片温度分布。

图 5 两种计算模型下叶片壁面温度

如图 5所示为两种计算模型下得到的叶片壁面 温度分布云图,叶片最高温度出现在尾缘叶尖位置, 这是由于随着冷却气体行程的增加,冷却效果越来 越差,从而导致了尾缘部位温度高于前缘,若能够设 计新的冷却结构有效降低尾缘位置温度^[12],则可以 大幅度降低叶片温度应力,从而大大提高叶片强度、 寿命与可靠性等性能。为了有效降低辐射对叶片温 度的影响,进一步提高叶片材料的耐热性能,工程上 往往使用氧化锆、氧化钇等材料的热障涂层,可以使 叶片温度降温 60.K左右rved. http://www.cnki.net

4 结 论

采用流热耦合数值模拟方法,对未考虑辐射和 考虑辐射两种情况下的回流式冷却叶片进行了内外 流场的耦合分析,得到以下结论:

(1)采用回流式冷却通道进行涡轮叶片冷却的 效果显著,可大幅度提高叶片工作温度;

(2)辐射对叶片表面温度分布的影响是显著的,考虑辐射后,叶片温度大幅度升高,叶片温度分 布发生变化,这将在很大程度上影响叶片的强度、寿 命和可靠性等分析的精度,

(3)叶片尾缘和叶尖是降温幅度最小区域,应 着重对该区域进行冷却设计,提高其冷却效果。

参考文献:

- KOFF BEMARD I, G as turb ine technology evolution a designer s perspective RJ. ANA 2003-2722 2003.
- [2] BAILAL DILP R Progress in aero engine technology (1939 2003)
 [7]. AIAA 2003-4412 2003.
- [3] HAN J C DUTTA S EKKAD S Gas turbine heat transfer and cooling technology [M]. London: Taylor& Francis, 2000

- [4] HAN JE CHN Recent studies in turbine blade cooling J. Inter national Journal of Rotating Machinety 2004 10(6): 443-457.
- [5] 王强,董平,姜澎,等.提高气冷涡轮气热耦合计算精度的措施[].工程热物理学报,2008 29(4):573-578
- [6] VILKER CARSIENS RALF KEMME SIEFAN SCHMIIT Coupled simulation of flow structure interaction in turbinemachinery
 [J. Aerospace Science and Technology 2003 7, 298-306
- [7] SCHOBERIMT, CHAKKA P. Prediction of turbine blade heat transfer and aerodynamics using a new unsteady boundary layer transition model [J]. International Journal of Heat and Mass Transfer 2002 45, 815-829.
- [8] SHENG CHUNHUAN XUE QNGIUAN Actorhemal analysis of turbine blades using an unstructured flow solver—U2NCLE [R]. AIAA 2005—4683 2005
- [9] 董平,黄洪雁,冯国泰.高压燃气涡轮径向内冷叶片气热耦
 合的数值分析[].航空动力学报,2008 23(2):201-207.
- [10] 贺志宏, 谈和平, 刘林华, 等. 发动机叶片流道内辐射换热的数值计算[]. 推进技术, 2001, 22(1): 65-68
- [11] 张丽芬,刘振侠,廉筱纯. 气冷涡轮叶片三维换热问题计算
 [1]. 航空动力学报,2007,22(8):1268-1272
- [12] 虞跨海,岳珠峰,杨 茜.涡轮叶片转弯流道换热分析与优化
 设计[].推进技术,2009,30(3):323-327.

(编辑 伟)

新技术、新工艺

具有蒸汽中间过热的三回路蒸燃联合循环装置的设计计算

《Т еплоэнер етика》2010年2月号公布了具有蒸汽中间过热的三回路余热利用蒸燃联合循环装置 (ПГУ)工质参数和经济指标的全套计算方法,该方法允许在设计计算阶段根据燃气轮机装置(ПГУ)排气的 参数确定余热锅炉(КУ)燃气和工质的参数,逐段逐级完成汽轮机的近似计算。

利用计算程序和软件包 DELPHI计算,并快速、可靠地优化IIIY 热力系统的参数和汽轮机的结构。

热力系统的计算如下:

(1)确定余热锅炉蒸发器生产的蒸汽产量和蒸汽参数,以及它的各个受热面的热功率。

(2)根据从一台或几台余热锅炉供给的蒸汽流量和蒸汽参数,以及冷凝器内给定的压力计算汽轮机的 功率。

(3)确定余热锅炉、汽轮机、蒸汽动力装置和蒸燃联合装置的经济指标。

最后指出,该计算方法和相应程序不能取代在工厂进行的余热锅炉和汽轮机结构的详细设计。但是,利 用它们可以加快初步设计,并且可以用作为方案计算和参数优化的工具。

(吉桂明 摘译)

° 274 °

2011年

face heat exchanger genetic a goritim optimized design them al performance calculation

回流式冷却叶片流热耦合数值分析 = Num erical Simulation of the Fluid/heat Coupling in Return Flow Type Cooling Blades[刊,汉] YUKua_hai(College of Planning and ArchitectumalEngineering Henan University of Science and Technopgy Luoyang China PostCode 471003), WANG Jin sheng (Beijing MechanicalEquip ment Research Institute Beijing China PostCode 100854), YANG X, i YUE Zhu feng (Department of Engi neering Mechanics Northwest Polytechnic University Xian, China, PostCode 710072) // Journal of Engineering for ThermalEnergy & Power - 2011, 26(3). -271~274

Established was a model for analyzing the fluid/heat coupling in the cooling blades of a return flow type turbine. The P-1 radiation model was used to add the radiant heat flow to the equation as the source item. An analysis was performed of the fluid/heat coupling of the cooling blades having no heat barrier coating with radiations being taken into account and not respectively. It has been found that the cooling air which accounts for 3.76% of the total gas mass flow rate can cause a temperature drop of 200 K to the blades by using the return flow type cooling structures. When the highest in let temperature is 1.655 and 1.555 K respectively a comparison of the temperature dis tributions on the blades obtained by using the two calculation models shows that the influence of radiations on the temperature of the blade surfaces is remarkable and this makes it relatively easy to form a highest temperature point at the tip of the trailing edge of return flow type cooling blades. Key words gas turb inc. return flow type cooling structure fluid/heat coupling radiation cooling blade

基于聚类分析与加权模糊逻辑的汽轮机组振动故障诊断方法研究 = Study of the Methods for D jagnosing V bration Faults of Steam Turb ne Units Based on the Clustering Analysis and Weighted Fuzzy Logiq 刊, 汉] DONG X jao feng GU Yu jiong YANG Kun (Education Ministry Key Laboratory on Power Plant Equipment Condition Monitoring and Control North China University of Electric Power Beijing China Post Code 102206), QU Ying (CSIC Harbin No 703 Research Institute Harbin China PostCode 150078)// Journal of Engineering for Themal Energy& Power - 2011, 26(3), -275~279

In the light of the problems in using fault signs to diagnose faults of a steam turbine unit presented was a method for diagnosing faults by a combination of the clustering analysis and the weighted fuzzy bgic. The frequency spectrum characteristics of various vibrations were employed to classify commonly seen faultmodes and form various cat egories of the faultmodes, thus differentiating the faultmodes in various natures according to their categories, solving the problem in identifying their categories and thereby narrowing the scope for identification of faultmodes. For the faultmodes in a same category the fault signs in various types were collected to establish a fault diagnosis and decision making table by employing the rough set theory and formulate rules for fault diagnosis by extracting the fault signs contributive to the fault identification W ith the degree of dependence on know ledge serving as the pre-"1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net