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that of the cooling chamber will increase with an increase of the static bed height fluidized air speed and fluid-
ization time duration. When both chambers are in operation simultaneously at a partition wall height of 1 000 mm
and the fluidization air speeds in both elutriation and cooling chamber are 5 m/s and 0.6 m/s respectively more
than 80% of the particles in the material returned are less than 0. 15 mm in diameter basically in the range of the
particle diameters of the ash cycled to the outside. Key words: circulating fluidized bed fluidized bed slag cooler

fine particle material return characteristics

= Model for Predicting the Major Faults of a Regenera—
tive System Based on an Artificial Neural Network WANG Yan LI Yan ( Shenzhen Designing Institu—
te China Nuclear Power Project Co. Ltd. Shenzhen China Post Code: 518000) YU Jun-hui ( Xian University
of Architectural Science and Technology Xian China Post Code: 710055) YU Ya-un ( Commercial College
Xian University of Foreign Languages Xian China Post Code: 710128) //Journal of Engineering for Thermal
Energy & Power. — 2011 26(4). - 424 ~427

To effectively predict the faults of a regenerative system established were three error BP ( back propagation) neural
network models for predicting the fault signs and phenomena of a regenerative system based on the Traingda

Traincgf and Trainrp algorithm respectively. In such a case the input layer was the fault signs and the output one
was the fault phenomena. The data actually measured in a power plant were used to conduct a training and testing
of the three prediction models. The training and testing results show that the model based on the Traincgf algorithm
has the smallest testing error and a relatively quick converging speed. Its network was of a 979 structure with its
momentum factor being 0.6 and the learning speed being 0. 8. The error BP neural network model based on the
Traincgf algorithm can effectively predict the fault phenomena of a regenerative system by using the fault signs thus
providing a certain reference value for testing the faults of a regenerative system. Key words: regenerative system

fault sign fault phenomenon Traincgf algorithm artificial neural network

= Application of the Modelfree Self-adaptive Prediction
Control in Superheated Steam Temperature Control FENG Yu-cang SHI Dongin ( College of Auto—
mation Engineering Northeast University of Electric Power Jilin China Post Code: 132012) // Journal of Engi—

neering for Thermal Energy & Power. — 2011 26(4). -428 ~431

By using the concept of the pseudo gradient vector a prediction model was obtained through a linear dynamic treat—
ment of the system under control. On this basis an improved model4ree self-adaptive prediction control algorithm

was presented. This new method was used in a cascade control system for superheated steam temperatures in a ther—



