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Fig. 3 Schematic drawing of electrode insulation
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Tab. 1 Test conditions for the tube and shell side
of a heat exchanger

/m* +h™! /°C /m* +h™! /°C

0.1 65 3.0 24

0.3 65 3.0 24

0.5 65 3.0 24

0.7 65 3.0 24

1.0 65 3.0 24
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By using the commercial software ANSYS CFS numerically calculated were the heat exchange characteristics of the
cooling air inside a straight ribbed rectangular channel and compared were the calculation results with the test data
obtained by Han. Furthermore the influence of Reynolds and the angle of ribs on Nusselt number was also ana—
lyzed. It has been found that the average Nusselt number obtained from the numerical calculation assumes an identi—
cal variation tendency to the test values. The calculation results however were bigger than the test values. Due to
the flow disturbance role played by the ribs two vortexes will be produced in the zone between any two ribs enhan—
cing the heat exchange between the cooling air and the solid wall surfaces. With an increase of Reynolds and Nusselt
number the average friction resistance coefficient will also increase. When the angle of ribs falls in a range from 45
to 60 degrees the intensified convection heat exchange effectiveness in the cooling channel is assessed as the best.

Key words: blade cooling rectangular channel flow and heat exchange

EHD = Experimental Study of the Electrohydrodynamically

( EHD) -intensified Convection Heat Exchange Inside a Tube With Water Serving as the Working Medium

YANG Xia ZHANG Jie WU Yan-yang ZHANG Tao ( College of Electromechanical Engineering Wu—

han Engineering University Wuhan China Post Code: 430073) // Journal of Engineering for Thermal Energy &
Power. — 2011 26(5). - 547 ~550

With water serving as the working medium experimentally studied was the EHD ( electrohydrodynamics) intensifi—
cation mechanism controlling the convection heat exchange inside water jacket heat exchanger tubes. During the
test a direct current type high voltage electrode was mounted at the center of the water jacket heat exchanger tubes
and the voltage of the electrode was within a range from DC 0 ~40 kV. A total of five groups of combined intensifi-
cation test were performed at different flow rates and voltages respectively. The test results show that under the con-
dition of different flow rates inside the tubes the electric field all played intensification role to various extents on
the heat conduction process inside the tubes. When the flow rate is 0. 1 m’ /h the intensification coefficient of the
electric field @ attains its maximal value being up to 1.224. When the flow rate is 1.0 m’/h the above-mentioned
coefficient @ attains its minimal value verifying that the electric field plays an intensification role on the convection
heat conduction process with water serving as the working medium. It has also been found however that the inten—
sification effectiveness achieved by the electric field enjoys a specific feature which is susceptible to any change of
the flow rate and at an identical flow rate there exists an optimum intensification voltage value. It is not true that
the higher the voltage value the better the intensification effectiveness. Key words: electrohydrodynamics ( EHD)

convection heat exchange intensified heat transfer electric field
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