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Co, = Study of the Critical Heat Flux Density of Boiling Heat Ex—
change During the Flow of CO, in Microchannels ZHANG Liang LIU Jian-hua AN Shou-gi( College of
Energy Source and Power Engineering Shanghai University of Science and Technology Shanghai China Post Code:
200093) JIN Chao( ( Luojing Oxygen Preparation Sub—factory Baoshan Iron and Steel Corporation Shanghai Chi-
na Post Code:200949) //Journal of Engineering for Thermal Energy & Power. -2012 27(1). -1~6

The critical heat flux ( CHF) density during the flow of CO, in microchannels in the process of boiling heat ex—
change has an important influence on the heat exchange coefficient. On the basis of the test data in the literatures
currently published in domestics the authors have conducted an analysis of the influence of the mass flow rate sat—
urated temperature and tube diameter etc. on the critical heat flux density and performed an error analysis between
the data obtained by using the theoretical model and the test ones. It has been found that the Bowring prediction
correlation formula has a relatively high precision in predicting the inner critical heat flux density of tubes with a di—
ameter of less than 3 mm. Within an error range of 30% the prediction precision can reach 70% . However Wo—
jtan prediction correlation foumula has a relautively small mean absolute error. The direction of the future study in
the boiling heat exchange by CO, flowing inside microchannels has been put forward by the authors. Key words:

microchannel critical heat flux density flow-based boiling heat exchange carbon dioxide

= Numerical Simulation of the Flow in a Fully-and-partially-shrou—
ded Axial Flow Turbine MAO Ning ZHANG Dong-yang HE Ping( Engineering Thermophysics Research
Institute Chinese Academy of Sciences Beijing China Post Code: 100190) WANG Lei ( Shenyang Engine Design
Research Institute China Aviation Industry Corporation Shenyang China Post Code: 110015) //Journal of Engi-

neering for Thermal Energy & Power. -2012 27(1). -7 ~12

By using a numerical simulation method studied was the flow field in a 1.5-stage axial flow shrouded turbine with
the flow field sealed by using a full shroud partial shroud and improved partial-shroud and its overall parameters
being analyzed. The calculation results show that relative to the fully-shrouded seal the partiallyshrouded seal not
yet improved may lower the efficiency of a turbine while the improved partial shroud can enhance such an efficiency
to one basically identical to that of the full shroud. A difference in the circumferential velocity of the leakage flow in
the blade shroud cavity and the main stream will lead to a smaller gas flow angle at the outlet than the main stream
one in more than 90% span of the blade. Compared with the partial shroud not yet improved the improved partial
shroud can reduce such a difference in the gas flow angle and the mixing and dilution losses. There exists a trans—
versal flow from the pressure surface to the suction one in the front of the partial shroud which can result in a very
big loss. The seal by using the improved partial shroud however can weaken such a transversal flow. Key words:

turbine blade shroud partial shroud leakage flow



