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Fig. 1 Flow path chart of a new gas—turbine
circulation system
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CH, +CO, =2CO +2H,—AH =247 k] /mol
CH, +H,0 = CO +3H,—AH =206 kJ/mol

CO +H,0 = CO, + H,—AH = —41 kJ/mol

2C0 =CO, + C—AH = — 172 kJ/mol

CH, = C +2H,—AH =75 kJ/mol

CO +H, = C + H,0—~AH = - 172 kJ/mol

(2) . (3) ;
InK (2) = —28640.6/T +6.597InT - 432767 -

4.3x107°T-10.1 (8)
InK (3) = -22734.3/T +8.16InT - 42107 * -
4.42x107°T -27.06 (9)

1
Tab. 1 Equilibrium constants of various reactions

at different temperatures

T/K K,(2) K,(3)
1073 130 50
1173 1453 404
1273 10 890 2 320
1373 59 401 10 149
1473 250 979 35 626
2.2
ny( mol) (1)
x( mol) (2) y( mol) (3)
z( mol)
CH,.CO,.H,0.CO.H,
N,
CO.H,.
(pv=nRT)
(2) . (3)
2y+z  p : 2y+3z  p 2
K(2) = ( n po) ( n p”)
ng-x-y-z_ p\fa=-y, p
( n po)( n PO)
E (Zy +z\’ (Zy +3z)2

Mo —x-y=2 p\[2x=z p
n P
82(2y+z)(2y+3z)3

n n

=

MPa; p—

.. 0
P

0
e=p/p o

o=(x+y+2)/n,
2.3

xAH, —yAH, —zAH; = Yn, x Ah,
‘n,— CAh—

i i

£ (10) ~
Matlab

(12)

X Y2

2.4
2.4.1 x
1 kg/s  62.5 mol/s

X

2.4.2 CH,/CO, y
3 CH,/CO, y

2.4.3 CH,/H,0 z
CH,/H,0 z T,

4 0 z y
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plications. With a 310 MW unit in a thermal power plant serving as an example an analysis of the steam turbine
stage characteristic flow path area was conducted. Through a calculation of the deviation rate of the stage character—
istic flow path area and the relative internal efficiency the operating state of the steam turbine flow path was judged

arriving at a conclusion that the flow path area of No. [ stage group of the steam turbine decreases other stage
groups are in normal work the steam extraction pressure measurements of No.7 and 8 section are not correct and it
is possible that a certain amount of hot steam is leaked into the steam turbine from steam extraction ports of No. 5
and 6 section. On these basis the authors have offerred proposals to conduct an inspection and treatment during the
overhaul of the steam turbine unit. It has been proven by the practice that the theoretical analytic results by using
stage group characteristic flow path areas are in good agreement with the practical ones. Key words: thermal power

plant steam turbine stage flow path capacity characteristic flow path area application

= Exergy Analysis of a Gas Turbine Cycle by Using the
Methane Self-heat Reforming Technology TANG Qiang ZHANG Xiao-gin HOU Shideng YANG Xu-
dong( Education Ministry Key Laboratory on Low Quality Energy Source Utilization Technologies and Systems Col-
lege of Power Engineering Chongqing University Chongqing China Post Code: 400030) // Journal of Engineering

for Thermal Energy & Power. — 2012 27(2). -165 ~169

Presented was a new gas turbine cycle by using the methane reforming technology. Firstly according to the working
process of the system the heat balance of the reaction inside the combustor was analyzed by using the thermodynam—
ic balance method. Secondly based on the second law of the thermodynamics the variation tendency of the exergy
efficiency of the new gas turbine cycle was studied. The research results show that the amount of methane consumed
in the combustion in the new cycle is smaller than that supplied depending on the variation tendency of the amount
of methane consumed in reforming of CO, and H,0 and the reaction equilibrium constant. Under the condition of a
same fuel consumption rate compared with a simple cycle the exergy efficiency of the new cycle increases greatly

up by 5.05% -15.57% . Key words: gas-turbine cycle methane reforming exergy analysis

IGCC = Simulation Study of IGCC Gasifier Control Versions WEI Jing
LIU Xiaoding ZHANG Li( Shandong Electric Power Engineering Consulting Institute Co. Ltd. Jinan China Post
Code: 250013) WU Ke( Guodian Nanjing Automation Stock Co. Ltd. Nanjing China Post Code: 210003) //Jour—

nal of Engineering for Thermal Energy & Power. — 2012 27(2). -170 ~175

In the light of such dynamic characteristics of Alstom gasifiers as noninear and multi-variable two multi-variable

control versions based on conventional PID controllers were proposed which adopted different manipulation varia—



