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. Tab. 1 Cold state test operating condition
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Tab. 2 Hot state test operating condition (m’ /h)
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the burner optimum values of which are 325 mm and 80 mm respectively. Key words: swirl burner concentration

ring NO, numerical simulation

= Experimental Study of the Structural Optimization of a LHV
( low heating value) Coal-bed Gas Burner CAI Song ZHANG Li PU Ge ZHOU Jin( Education Ministry
Key Laboratory on “Low Quality Energy Source Utilization Technologies and Systems” Chongqing University
Chongqing China Post Code: 400030) //Journal of Engineering for Thermal Energy & Power. — 2012 27(2). -

202 ~206

Optimized and designed was a LHV coal-bed gas burner with guiding vanes being mounted in the gas tube and a
once-through air tube being additionally installed between the swirling flow air tube and the gas tube. Finally a
cold-state and hot-state test were performed respectively of the burner under discussion. The optimized burner has a
smoother and slower swirling flow intensity descending along the center axes than the original one and the intensity
of the optimized one at a same location on the center axes is bigger than that of the original. The former has a maxi—
mal swirling flow intensity of 0.53 and a combustion temperature rise quicker than the latter along the center axes.

At a distance of 0.55 m on the center axes the combustion temperature attains its maximal value of 1440 K. At a
same heat load the temperature peak value of the former is more close to the spout and also bigger than the latter.

Furthermore the original has a higher tail portion flame temperature a longer flame and a lower local volumetric
heat intensity. Key words: swirling flow intensity flame temperature burner LHV ( low heating value) coal-bed

gas burner

= Study of the Pre-mixed Combustion Characteristics of a Por-
ous Medium Heat Recuperation Micro-burner CAO Haidiang ZHANG Kai ZHANG Suo-guo ZHAO
Ji-na( College of Chemical Engineering and Energy Source Zhengzhou University Zhengzhou China Post Code:

450001) //Journal of Engineering for Thermal Energy & Power. — 2012 27(2). -207 ~211

Designed was a porous medium heat recuperation micro-burner and experimentally studied and numerically simula—
ted were its H, /A, premixed combustion characteristics. The test results show that when the excess air factor falls in
a range of 1.0 < <3.0 the burner has a relatively high combustin efficiency and outlet flue gas temperature and a
relatively low combustion heat loss. Furthermore the higher the combustion heat power P the bigger the o and the
smaller the heat loss rate. When P =100 W the maximum outlet flue gas temperature can hit 1232 K. When o =3.

0 the combustion efficiency still can reach 96.85% while the heat loss rate is only 14.87% . The numerical simu-

lation results show that due to an adoption of a heat recuperation interlayer and porous medium heat recuperation



