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Fig. 1 Schematic diagram of an air-solid two—-phase flow test system
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system on its thermal efficiency and output power. The numerical simulation results show that when the back pres—
sure of the steam turbine is set at 0. 25 MPa the highest evaporation pressure of the working medium can reach 2.

566 MPa. Within this range of the evaporation pressure the thermal efficiency of the system will monotonically in—
crease with an increase of the evaporation pressure. Under a same evaporation pressure it will not increase obviously
with an increase of the flow rate of the working medium however more net output power can be obtained. When the
evaporation pressure is set 1.5 MPa with a drop of the waste heat discharging temperature the net output power of
the system will increase markedly. With a drop of the back pressure of the steam turbine the thermal efficiency of
the system will be obviously improved. However the drop of the back pressure of the steam turbine increases the dif—
ficulty for condensing the working medium and the proper back pressure is regarded as 0.2 MPa. Key words: oil
shale exploitation by making use of convection heat low temperature waste heat organic Rankine cycle thermody-

namic analysis

~ = Experimental Study of a Novel Gas-solid Two-phase
Fluid Average Flow Speed Measuring Meter /SUN Bao-min ZHAO Yong-gang ( College of Energy
Source Power and Mechanical Engineering North China University of Electric Power Beijing China Post Code:
102206) ZHAO Zhi-yong ( Inner Mongolia Electric Power Science Research Institute Huhhot China Post Code:
010020) SHI Zhong-quan ( Baotou No.2 Thermal Power Plant Northern Joint Power Corporation Baotou China

Post Code: 014030) // Journal of Engineering for Thermal Energy & Power. — 2012 27(6) . —670 ~ 675

To solve the problem to real-time and accurately measure the average flow speed of a gas—solid two-phase flow in a
pipeline developed was a novel gas-solid two-phase flow average flow speed measuring meter and a relative second—
ary measurement system based on a direct measurement mode. To further study the performance of the meter and
continuously improve its design structure a gas-solid two—phase flow test system was set up. Relevant experimental
study of the performance of the measuring meter was conducted. The test and on-site applications show that the me—
ter has a good performance and can realize a long-period stable and accurate measurement of the average flow speed
of the gas—solid two-phase flow in an industrial pipeline with the measurement error being <2% . The straight tube
section required for installation at the site is short. The meter has a small flow resistance and a long service life ca—
pable of meauring the average flow speed of a gas—solid phase flow at a high and low concentration. It can be in—
stalled and used in a pipeline with a round and rectangular section. It has obtained the national invention and patent
as well as the provincial and ministry-devel science and technology advancement prize and has got good applications

in tens of utility boilers. Key words: gas—solid two-phase flow average flow speed measuring meter experimental
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study

= Heat Transfer Model for and Experimental Study of an In-tube Slug
Flow /MA Yong-qian SHAO Ru ( Shengli Oil Field Well-drilling Technology Research Institute Dongy-
ing China Post Code: 257017) WANG Zhi~yuan ( ( East China) College of Petroleum Engineering China Petro—
leum University Qingdao China Post Code: 266580) HE Pi=xiang ( Oil Production Technology Research Institute
Dagang Oil Field Company Dagang China Post Code: 300280) //Journal of Engineering for Thermal Energy &

Power. — 2012 27(6) . —676 ~679

In the light of the specific features of a slug flow established was a heat transfer model for slug flows. The theoretical
value of the average heat transfer coefficient calculated by using the model is in very good agreement with that of the
test one with the error being within 10% . Compared with other models the heat transfer model for slug flows is more
close to the actual conditions. In addition the authors have also analyzed the influence of the fluid and gas flow rate
on the heat transfer coefficient. The heat transfer law test results show that the gas and fluid flow rate ( speed) under
a slug flow and the convection heat exchange coefficient assume a linear relationship and the fluid flow rate is regar—
ded as the main factor influencing the heat transfer. Key words: slug flow heat transfer model fluid flow rate gas

flow rate

= Analysis of the Influence of the Contamination of the Tube
Bundles on the Performance Parameters of a Supercharged Boiler /JIA Ru-bin WANG Jian—zhi
WANG Yong-tang XUE Wei( CSIC No. 703 Research Institute Harbin China Post Code: 150078) //Joural of

Engineering for Thermal Energy & Power. — 2012 27(6) . —680 ~ 683

The value of the thermal effectiveness coefficient obtained by complying with “Thermodynamic calculation of boiler
units-standard method” ( 1973 Edition) is not applicable for a supercharged boiler. The authors have determined
the values of the thermal effectiveness coefficients of the vaporizer tube bundles and the superheater tube bundles of
a supercharged boiler at various loads on the basis of the test data of the supercharged boiler. It has been found that
with an increase of the load both thermal effectiveness coefficients of the vaporizer tube bundles and superheater
ones of the boiler assume a descending variation tendency. The contamination of the soot deposited on the tube bun—

dles will increase the thermal resistance of the tube bundles and decrease the thermal effectiveness coefficient of the



