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Based on the specific features of the combustion of high temperature coal gas and its requirements for coal gas burn—
ers presented was a novel type coal-gas burner with a cold-state test rig being set up. A cold-state test was per—
formed of the influence of the inner structure of the burner and the operating conditions on the flow field distribution
by employing an isothermal modeling method. The test results show that a bigger swirling intensity will be produced
when the swirling angle of the blades is set at 60 degrees than those when it is set at 45 degrees and 30 degrees fa—
vorable for the swirling flow mixing effectiveness of the high temperature coal-gas and the air supplied in the com-
bustion chamber and at the same time also quickening the attenuation of the swirling flow. Furthermore the swirling
effectiveness of a burner with 8 blades is better than that of a burner with 6 blades however a bigger resistance may
result in the flow field. When the central air quantity increases from 0. 8 times provided under the rated operating
condition to 1.2 times the influence of the swirling flow will be weakened on the straight flow contributing to chan—
ging the shape of the flame. When the distance from the blades to the spout is reduced from 65 mm to 0 mm the
swirling effectiveness will become conspicuous favorable for mixing various gas flows. The cold-state test results can
offer reference for the optimized design and further hot-state test of the burner. Key words: coal-gas burner blade

swirling angle central air quantity cold-state test flow field distribution

= Study of the Structural Optimization of a Partially
Pre-mixed Type Swirling Burner Burning the Coal Bed Gas With a Low Heat Value /YANG Xin
ZHANG Li YANG Zhong—ging ( Education Ministry Key Laboratory on Low Quality Energy Source Utilization Tech—
nologies and Systems College of Power Engineering Chongqing University Chongqing China Post Code:

400044) // Journal of Engineering for Thermal Energy & Power. — 2012 27(6) . —695 ~701

For a partially premixed type swirling burner burning the coal-bed gas with a low heating value optimization studied
was its structure by additionally installing a bluff body on it and investigated was the law that the bluff body influ—
ences the speed temperature and distribution of the methane concentration at the outlet of the burner by using a nu—
merical analytic method. It has been found that to additionally install a bluff body onto the outer wall of the fuel gas
tube can improve the partially premixing effectiveness of the burner and shorten the length of the flame. To addition—
ally mount a bluff body at the outlet of the supporting tube can enhance the jet flow rigidity of the gas flow at the
outlet of the burner making the inHurnace temperature distribution tend to be uniform and at the same time enhance
the capacity and area of the flow return zone to entrain the high temperature flue gas thus forming a stable high tem—
perature zone at the outlet of the spout. To partially optimize the burner by additionally install two pieces of bluff

body can achieve good combustion stability at the same time of ensuring a rigidity of the jet flow of the optimized
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burner. The axial speed gradient and temperature at the outlet of the burner will increase with an increase of the
taperness of the bluff body at the outlet and it is proper to choose 34.21 degrees as the taperness of the bluff body
at the outlet of a burner. Key words: low heating value coal-bed gas partially pre-mixing bluff body flow return

zone numerical simulation

0,/CO0, (V) - NO, N,0 =0,/C0O, Combustion in a Fluidized Bed ( V) dn-
fluence of the Oxygen Concentration on NO,. and N,O /ZHAO Ke TAN Li DUAN Cui4iu LU Qing-

gang ( Engineering Thermophysics Research Institute Chinese Academy of Sciences Beijing China Post Code:

100190) // Journal of Engineering for Thermal Energy & Power. — 2012 27(6) . =702 ~708

A circulating fluidized bed can realize O,/CO, combustion at a high oxygen concentration thus reducing the size of
the combustion chamber and the recycling flue gas quantity. The authors have tested two bituminous coal ranks and
a lignite coal in a 15 kW circulating fluidized bed test system and a 0. 15 kW one respectively. The influence of the
oxygen concentration on the NO, and N,O was studied. The research results show that all the three coal ranks can
realize stable combustion when the oxygen concentration of the primary air ranges from 44.3% to 55.3% and that
of the secondary air is between 43.2% and 60.2% . When the oxygen concentration is about 50% the conversion
rate of nitrogen in the coal to NO, will decrease to 19% —60% of the nitrogen in the coal while the conversion rate
of nitrogen in the coal to N,O will decrease to 20% —81% of the nitrogen in the coal when burning in the air at—

mosphere. Key words: fluidized bed 0,/CO, combustion N,0O NO,

PID = Study of the Control Over the Main Steam Temperature in a
Thermal Power Plant Based on an Improved Neural Network PID ( Proportional Integral and Differential)
Control /GAO Kundun LIANG Xiao WANG Jie ZHANG Heng ( College of Electrical Engineering
Zhengzhou University Zhengzhou China Post Code: 450001) //Journal of Engineering for Thermal Energy & Pow—

er. — 2012 27(6) . =709 ~714

In the light of problems and shortcomings existing in the traditional neural network PID control systems presented
were measures for improvement. For the structure of the network by adding a single-connected network layer the
parameters of the PID controller corresponding to the output of the network were intervened. As for the tactics for

learning the network linkage weight value a parameter index was chosen to real time monitor the error of the sys—



