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Fig. 2 Diagram of a hybrid power generation
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the Inner Mongolia-originated coal was 769 mg/m’ and that from the Huainan-originated coal was 695 mg/m’. In
the meantime the dual-peak variation law governing the precipitation of NO, from the coal bed surface under differ—
ent air distribution modes was obtained offering a theoretical basis for operation of practical industrial boilers at low

NO,, emissions. Key words: laminar combustion boiler NO, air distribution mode experimental study

= Numerical Model and Calculation of the Stratified Combustion in a
Chain Stoker ZHANG Pin DU Haidiang WANG Yuan LUO Yong-hao( Thermal Energy Engineering Re—
search Institute Shanghai Jiaotong University Shanghai China Post Code: 200240) //Journal of Engineering for
Thermal Energy & Power. — 2013 28(1). -93 ~98

In the light of the specific features of the stratified combustion on the basis of a single particle diameter model es—
tablished was a dual particle diameter model for the stratified combustion of a chain stoker and verified through a
test in a practical boiler. The dual particle diameter model can better simulate the combustion characteristics of the
coal bed after a stratified coal bunker has been additionally installed. By utilizing the improved dual particle diame—
ter model the influence of the coal feed modes by a commonly used coal bunker and a stratified coal bunker on the
combustion was simulated. It has been found that the dual particle diameter model can simulate very well the com—
bustion characteristics of the coal bed when large and small particles of coal are present simultaneously. The strati—
fied stacking mode is conducive to the ignition of coal bed and the promotion of the burn-out of coal. The content of
carbon in ash and slag during stratified combustion is 9. 54% while that during blended combustion is 15. 81%.

Key words: chain stoker laminar combustion stratified combustion numerical simulation

= General-purpose Matrix Model for Hybrid Power
Generation Systems Based on a Variable Heat Quantity Equivalent Heat Drop YE Xue-min LI Chun-
xi( College of Energy Power and Mechanical Engineering North China University of Electric Power Baoding China
Post Code: 071003) QI Cheng( Northwest Electric Power Designing Institute Xian China Post Code: 710075) //
Journal of Engineering for Thermal Energy & Power. — 2013 28( 1) . —99 ~ 104

On the basis of a constant heat quantity equivalent heat drop method established was a variable heat quantity equiv—
alent heat drop general-purpose matrix model for hybrid power generation systems. With a 600 MW unit integrated
in a hybrid power generation system serving as an example by using the general purpose matrix model the thermal
cost-effectiveness of the unit in a hybrid power generation system was calculated with the advantages of the hybrid
power generation system being analyzed. The research results show that the system efficiency coal quantity saved
and carbon dioxide emissions reduced are closely related to the location acted by the auxiliary heat source system
and the flow distribution coefficient. When the auxiliary heat source system acts on the high pressure stage heaters

the energy saving potential and the economic benefit of the system are as a whole better than those when it acts on
the low pressure stage heaters. When the auxiliary heat source system acts on various low pressure stage heaters the
steam extraction efficiencies of various high pressure stages and the deaerator stage will be improved. Key words:

variable heat quantity equivalent heat drop hybrid power generation matrix model thermal cost-effectiveness



