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Tab. 1 Parameters of the low temperature waste
heat power generation test system
/K 383.15
/kg*+s™! 0.017
/MPa
/MPa 0.2
3.1
12
T-s N
3 13
4~6
R114.R236fa.R123.R245fa R600
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Tab. 2 Thermodynamic properties of the working media
P, /MPa T./K Ty /K obr
R236fa 3.20 398.05 271.71 0
R114 3.26 418.85 276.95 0
R123 3.29 456. 85 300.95 0
R245fa 3.64 427.2 288.05 0
R600 3.80 425.2 272.65 0

1 ODP - ozone depression potential
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Fig. 3 Law governing a change of the thermal
efficiency of the system under the condition of

different working media and evaporating pressures
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= Study of the Cooling Heating and Power Output Charac-
teristics of an Advanced Adiabatic Compressed Air Energy Storage ZHANG Yuan YANG Ke LI Xue-
mei et al( Engineering Thermophysics Research Institute Chinese Academy of Sciences Beijing China Post Code:

100190) //Journal of Engineering for Thermal Energy & Power. — 2013 28(2) . —134 ~ 138

With a change in the heat distribution in a heat storage device serving as a basis established was a cooling heating
and power cogeneration model for an advanced adiabatic compressed air energy storage system and derived was the
expression of the main parameters of the system. With changes of the cooling heating and power load of a building
serving as an example the authors compared the energy output characteristics of the power supply model of the AA-
CAES system with those of the cooling heating and power cogeneration model. The results calculated by using the
models show that compared with the power supply model when the cooling heating and power cogeneration model
reaches its maximum power generation capacity it can simultaneously provide a maximal output of cooling energy
quantity of 0. 62 units and heat energy quantity of 1.1 units ( when the maximum power generation capacity is re—
garded as 1 unit) . To regulate the heat distribution in the heat storage device can change the proportions of the cool—
ing heating and power output of the cooling heating and power cogeneration model thus better making the adapta—
bility to load variations. Key words: AA-CAES ( Advanced adiabatic compressed air energy storage) system ener—

gy storage cooling heating and power cogeneration

ORC = Influence of the Working Medium on the Ther—
modynamic Performance of an ORC ( Organic Rankine Cycle) System With Low Temperature Waste
Heat-produced Steam Serving as the Heat Source YANG Xinde DAI Wen—zhi REN Chang-zai ( Col-
lege of Mechanical Engineering Liaoning Engineering Technology University Fuxin China Post Code: 123000)
ZHAO Yang-sheng ( Mining Technology Research Institute Taiyuan University of Science and Technology Taiyuan
China Post Code: 030024) //Journal of Engineering for Thermal Energy & Power. — 2013 28(2) . - 139 ~ 144

To recover and utilize the steam produced from low temperature waste heat during the hot exploitation of mineral re—
sources proposed was an organic Rankine cycle-based thermal power generation system. With the parameters of a
self-developed convection hot production oil shale low temperature waste heat power generation test system serving
as the basis five environmentally-protected working media were chosen. Through utilizing the calculation program
designed the law governing the influence of different working media on the thermodynamic performance of the sys—
tem was simulated and analyzed. The calculation and simulation results show that each working medium can work
only in the subcritical state the thermal efficiency and net output power of the system will assume a monotone in—
crease and decreasing increment tendency with an increase of the evaporation pressure. To use R236fa can obtain
the highest evaporation pressure of 1.94 MPa while to use R600 can get the highest net power output and thermal

efficiency of 4.211 kW and 11. 1% respectively. Due to a relatively high evaporation pressure permitted by the sys—
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tem when R236fa R600 and R114 are used a relatively big net power output can be produced with a relatively high
thermal efficiency. The variation law of the exgergy efficiency of the system with the evaporation pressure is similar
to that of the thermal efficiency. The exergy efficiency of the system when R600 is used can hit the highest of
45.98% . To raise the evaporation pressure can effectively enhance the exgergy efficiency of the system and decrease
the exergy loss of the system. From the viewpoint of the difficulty of the exhaust steam to be condensed the authors
believe that R245fa and R123 should be the working media applicable for organic Rankine cycle systems. Key
words: organic working medium low temperature waste heat-produced steam organic Rankine cycle thermodynam—

ic performance

= Study of the Annular Flow in Vertical Risers by Using Ray Meth—
ods HU Ri-cha BI Qincheng ZHAO Yu et al( National Key Laboratory on Multiphase Flow in Power En—
gineering Xian Jiaotong University Xian China Post Code: 710049) //Journal of Engineering for Thermal Energy
& Power. — 2013 28(2). — 145 ~149

Discussed were the void fraction in a section of a vertical riser in annular flow measured by a single beam of y-ray
and the evolution of the flow pattern. The quick closing valve method was used to calibrate an average void fraction
in a section and compared with two calculation formulae of the ray method. The errors as calculated by using the lin—
ear and logrithm formula were within a range of £6.2% and *7.1% respectively. Based on the void fractions in
the section and the distribution of the liquid phase the evolution of the annular flow in the vertical riser was deter—
mined to pass through the following three zones namely non-uniform distribution zone relatively stable zone and
fault zone. The chart showing the distribution of void fraction in the section by using the ray method and the magni—
tude of the relative error as calculated between the two formulae can reflect the evolution of the annular flow. The re—
al-time photos verified the accuracy of the results detected by using the ray method. Key words: y-ray densiome—

ter void fraction in a section annular flow

= Study of a Model for Predicting the Liquid Drop Velocity in
the Lower Reaches of a Flow Field Under the Effervescent Atomization FANG Heng-he XIE Jing
( College of Food Science Shanghai Oceanology University Shanghai China Post Code: 201306) LIU Meng ( Col-
lege of Energy Source and Environment Southeast University Nanjing China Post Code: 210096) //Journal of En—
gineering for Thermal Energy & Power. —2013 28(2) . - 150 ~ 153

To predict the liquid drop velocity in the lower reaches of a flow field under the effervescent atomization established
was a model for predicting the above-mentioned liquid drop velocity under the gasdiquid two-phase flow atomization

with the help of a corrected local homogenous flow ( HLF) model and compared was the velocity such obtained with



