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Tab. 1 Table of the operation parameters under the actual operating condition inputed from the BP neural network
1% /C
/kWh /MPa /C 1% 1% /kJ = kg™!
1 157 5.36 132 13.22 537 44.36 32.47 14933
2 168 4.76 129 13.17 535 43.7 33.36 15230
3 157 5.42 131 13.21 536 47.03 30.76 15311
4 154 5.36 133 13.22 537 45.8 38.12 15264
5 152 5.25 131 13.2 534 44.53 35.75 16134
6 146 5.4 124 13.18 536 44.84 36.01 16043
7 150 4.89 133 13.18 537 43.58 33.29 15676
8 148 4.79 133 13.19 537 46.7 36.29 15686
9 152 4.77 134 13.21 536 45.25 26.82 15545
74 182 4.4 140 13.16 536 49.36 31.42 15255
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law governing the influence of the pyrolytic temperature on the coal tar productivity coal gas constituents coal tar
constituents was obtained respectively: the temperatures corresponding to the highest yields of coal tar from the a—
bove-mentioned three types of coal were 481 C 519 C and 514 °C respectively and the coal tar yields were
13.58% 12.54% and 4.23% respectively. The H, and CH, productivities of the three types of coal increased with
an increase of the temperature while the CO productivity of the oil shale rock attained its maximum at 490 °C and
then decreased with an increase of the temperature. The carbon dioxide productivities of the three types of coal were
all influenced little by the temperature. At various pyrolytic temperatures Grade No. 6 coal had relatively high pro—
ductivities of hydroxybenzene and benzene derivatives. When the temperature was 440 °C the long chain hydrocar—
bons of the coal fed into the furnace for coal gas production approximately took up 50% of the coal tar in weight.

Key words: coal pyrolysis pyrolytic temperature coal tar coal gas

= Exploratory Study of the Generalized Dynamic Rebuilding
Algorithm for Testing and Measuring a Gas-solid Multi-phase Flow WANG Ze-pu LIU Shi ZHOU
Lei ( College of Energy Power and Engineering North China University of Electric Power Beijing China Post Code:
102206) CHEN Jiangtao ( Beijing Subcompany China Tianchen Engineering Co. Ltd. Beijing China Post Code:
100029) //Journal of Engineering for Thermal Energy & Power. — 2013 28(2) . - 177 ~ 181

Through monitoring the flow speed and rate of a gas-solid two phase flow the flow characteristics of the fluid trans—
mitted was clarified and the pneumatic transmission process was successfully performed. The capacitance topography
technology is regarded as one of technologies for detecting a gas-solid two phase flow and the key lies in its image
rebuilding link. Through choosing a proper image rebuilding algorithm one can reversely deduct the distribution
characteristics of the fluid transmitted in a section. To improve the rebuilding image quality of the ECT system and
enhance the accuracy of the detection technology presented was a generalized dynamic image rebuilding algorithm
integrating the space restriction time restriction and reverse deduction information of the fluid flow. By analyzing
and comparing the numerical test and the conventional image rebuilding algorithm the authors believe that the im—
age structure rebuilt by using the algorithm in question should be clearest. The test showed the pulverized coal and
ash pneumatic transmission process as reversely deducted by using the algorithm in question. Both coal and ash ob—
viously embodied the advantage of the dynamic rebuilding algorithm. Key words: electric capacitance topography

( ECT) generalized dynamic rebuilding algorithm gas—solid two—-phase flow annular flow bubble flow

BP = Modeling for Predicting the Flammable Content of Fly Ash
Base on a Particle Swarm Optimized Back Propagation Neural Network LU Tai GUO Zhi-ging( Col-
lege of Energy Power and Engineering Northeast University of Electric Power Jilin China Post Code: 132012) //
Journal of Engineering for Thermal Energy & Power. —2013 28(2). - 182 ~186
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The magnitude of the flammable content of fly ash represents one of the important factors influencing the efficiency
of a boiler and plays an important role in economic operation of the boiler. The authors optimized the linking weight
value and threshold one between the nodes of a BP neural network by using the PSO ( paricle swarm optimization)

algorithm and established a BP neural network-based model optimized by using the PSO algorithm ( called as a PSO-
BP model for short) . The model can thoroughly give a full play of both overall optimization searching ability of the
particle swarm optimization algorithm and the local searching edge of the BP algorithm. The operating parameters of
a 670 t/h boiler were used to predict the flammable content of the flying ash. It has been found that compared with
the BP neural network based model the PSO-BP model is more precise and faster to come to a converging point

thus offering a feasible method for analyzing and predicting the flammable content of fly ash in large-sized utility

boilers. Key words: BP neural network flammable in fly ash optimization modeling

1 000 MW = Thermoeconomic Analysis of a 1 000 MW Coal-fired Power Genera—
tion Unit CHENG Weidiang JI Hui DI An ( College of Energy Power and Mechanical Engineering North
China University of Electric Power Beijing China Post Code: 102206) //Journal of Engineering for Thermal Ener—
gy & Power. — 2013 28(2). —187 ~191

To analyze in a comprehensive way the technical and economic operation characteristics of a large-sized thermal
power generation unit established was an analytic model based on the matrix mode thermoeconomics with a 1000
MW large-sized coalfired unit serving as the object of study. By employing a thermoeconomic performance calcula—
tion software developed to calculate analyze and optimize the corresponding indexes were realized and at the mean—
time a concept of average thermoeconomic unit cost was presented. It has been found that the exergy economic coef—
ficients of the feedwater pumps and boilers are relatively small indicating that their exergy losses take up relatively
big proportions. The exergy economic coefficient of No.2 high pressure heater is very high. With an increase of the
live steam pressure the average thermoeconomic unit cost will gradually decrease. With a rise of the live steam tem—
perature such a cost will decrease relatively quickly. When the live steam temperature or reheat temperature is 597
°C such a cost will be down to its minimum value. Key words: thermoeconomics evaluation index cost analysis

average unit thermoeconomic cost exergy economic coefficient

600 MW = Equipment Modification of a 600 MW Coal-fired Boil-
er Mixing-dilution Burning With Lignite at a Large Proportion WANG Liu-hu WANG Rong WANG
XiaoHeng et al( Inner Mongolia Jinglong Power Generation Co. Ltd. Fengzhen China Post Code: 012100) //Jour—
nal of Engineering for Thermal Energy & Power. — 2013 28(2). - 192 ~195

Due to a big water content and low heating value of lignite its mixing-dilution combustion in a large amount may e—



