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Fig. 1 Chart for showing the flow pattern of the

discharge from a material bunker
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Fig. 4 Schematic diagram of the test device

Fig.5 Flow pattern photographed during the test
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Tab. 1 Calculation conditions and results
° /() /s /
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Fig. 6 Two — dimensional simulation calculation region
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Fig. 8 Condition No.2 at a taper angle of 30°

Fig. 7 Quartz sand simulation condition No. 1 — .....'
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Fig. 9 Condition No. 3 at a taper angle of 60°
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Fig. 10 Condition No.4 at a taper angle of 90°
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Tab. 2 Calculation conditions and results

/mm /s /
NANAS A - 7 10 9360 106 100
8 13 5 340 106 040
1 15 4 800 105 970
9 17 4520 105 890
4 20 4 500 106 200

11 5 120°
Fig. 11 Condition No.5 at a taper angle of 120°
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Fig. 14 Condition No.7 at a discharge

opening diameter of 10 mm
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Fig. 12 Condition No. 6 at a taper angle of 150°
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Fig. 13 Chart showing the curves of the discharge

time duration — taper angle of the material bunker
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9r Tab. 3 Calculation results
8 .
L Tr /mm /s /
= 6L
E : . 230 4 800 105 970
z 3 —_—
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2l 190 4 470 85 970
Lr 170 4320 75 970
0 1 1 1 1 1 1
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Fig. 17 Chart showing curves of the discharge
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ang( College of Control and Computer Engineering College of Nuclear Science and Engineering North China Uni—
versity of Electric Power Beijing China Post Code: 102206) //Journal of Engineering for Thermal Energy & Pow—

er. — 2013 28(4). -395~401

In the light of such specific features as difficulty in setting the PID parameters of the main controller of the water
level feeddorward and feed-back cascade three-impulse control system of a U-shaped steam generator and a high
standard set for the robustness presented was a systematic method for setting the PID parameters. The method under
discussion combined PID type Hoe loop shaping controller comprehensive algorithm with the first-order forward and
lagging-behind type weight function optimization algorithm given by the authors. The optimized PID controller can
maximize the robustness stability allowance of the system under the precondition of a certain control quality being
ensured and the whole optimization algorithm is based on the linear matrix inequation technology and has a low cal-
culation cost. The method under discussion was used to set the parameters of the main controller of the water level
control system of a steam generator. The simulation results show that the water level control system set by using the
method in question can achieve a relatively good robustness and robust stability and the comprehensive control qual-
ity is superior to that achieved by using the method combining the high/low order weight function optimization algo—
rithm with the standard He loop shaping controller comprehensive algorithm. Key words: loop shaping weight

function optimization linear matrix inequation steam generator water level control

= Numerical Simulation and Experimental Study of the Dis—
charging of Super Concentrated Powder from a Bunker LI Han-ming ZHU HongHei SUN Shan-shan
YUAN Zuin ( College of Energy Source and Environment Southeast University Nanjing China Post Code:

210096) //Journal of Engineering for Thermal Energy & Power. — 2013 28(4). -402 ~408

To solve the key problem existing in the study of the numerical simulation of the flow characteristics of super con—
centrated powder presented was a new mathematic model for depicting the discharging process of powder in a bunk—
er. On the basis of the discrete model for particles the model in question was established by depicting the solid
phase concentration and the particle swarm movement characteristics in a local space thus capable of effectively

simulating the discharging and accumulation process of powder in the bunker. The model under discussion was used
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to simulate the discharging process of powder in a bunker and in the meanwhile the quartz sand discharging flow
pattern observed from the test rig set up independently was utilized to verify the correctness of the simulation. The
model was also utilized to study the law governing the influence of the cone angle discharging diameter and height
of the bunker on the discharging time and flow pattern therefore the foregoing can offer certain guidance for design
of bunkers in practical production. Key words: super concentrated powder bunker flow characteristics numerical

simulation

= Study of the Monitoring of the Local Ash Fouling on
the Water Walls of a Utility Boiler Based on the Acoustic Pyrometry ZHANG Shiping SHEN Guo-
qing AN Liansuo NIU Yu-guang( Education Ministry Key Laboratory on Power Plant Equipment Condition Monito—
ring North China University of Electric Power Beijing China Post Code: 102206) //Journal of Engineering for

Thermal Energy & Power. — 2013 28(4). -409 ~414

To solve the difficulty in monitoring the ash fouling on water walls of a boiler introduced was a cleaning factor to
transform it into an acoustic pyrometric problem. On this basis an ondine system for monitoring the ash fouling on
water walls of a boiler was developed and an experimental study was performed on a domestic 300 MW boiler. As a
result the flue gas temperatures along the acoustic line close to the water walls were obtained and the temperature
fields in the sections of the furnace in the boiler were rebuilt. The research results show that the new cleaning factor
can be used to monitor the local ash fouling conditions of the water walls. Due to the curvature effect of the sound
wave the average flue gas temperature measured along the acoustic line is about 130 °C higher than that on the sur—
face of the water walls facing the flame. Any change in the temperature of flue gases close to the water walls can be
used to represent that in the water wall temperature. The temperature field thus rebuilt can be used to real-ime and
accurately observe the movement of the flame center in the furnace thus the foregoing can offer important reference
for monitoring ash fouling and intelligent soot blowing in boilers. Key words: water wall cleaning factor ash foul-

ing monitoring acoustic pyrometry flame center

= Study of the Denaturing of the Agent for Desulfurizing Magnesium



