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Fig. 1 Chart showing the flow path of the traditional

power, steam and hot water cogeneration system
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Fig. 2 Chart showing the flow path of an improved

power,steam and hot water cogeneration system
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Tab. 1 Initial parameters of the power steam and
hot water cogeneration system
/MW 70. 14
/m* - a”! 1.54 x 10
/ em7? 2.6
/' (MPa/C) 5.5/520
/' (MPa/C) 0.55/200
kW 3012
/C 70
ftea! 2.19 x10°
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Tab.2 Annual investment costs of various equipment items
/ ca”!
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Tab. 3 Unit exergoeconomic costs of power

steam and hot water ( yuan/GJ)

141.9 208.07 901.38
137.7 177.41 1209. 76
2.75% 14.74%
34.22%
3.4
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der discussion can be used to conveniently and accurately identify the load and center distribution of bearings thus
offering guidance for installation and maintenance of the unit. Key words: steam turbine bearing load bending

strain method vibration test

= Contrast and Analysis of the Worldwide Technologies for
Gas Turbine Inlet Air Deicing Systems CHEN Ren-gui CHEN Lei ( Tarim Oil Field Company China
National Petroleum Corporation Korla China Post Code: 841000) WANG Qingdiang KANG Cheng—ia ( West
Pipeline Company China National Petroleum Corporation Urumchi China Post Code: 830012) //Journal of Engi—

neering for Thermal Energy & Power. —2013 28(6) . —569 ~572

At present the air inlet systems for gas turbines introduced from abroad are often provided with heating and deicing
devices for silencers and air inlet bell-mouths. However such devices are incapable of preventing the high efficiency
cartridges from being iced and clogged even the safe and stable operation of gas turbines in frigid regions in winters
are seriously affected and the relevant standards of China are not met. The authors analyzed the major difference in
the air inlet deicing technologies for gas turbines in the world and the main causes for protective shutdown of some
units often tripped by deicing systems and performed reconstruction of the units by employing the deicing technology
developed in domestics. It has been found that the units after the reconstruction can not only enhance the reliability
of the operation of the gas turbines in winters but also save a large amount of energy. Key words: gas turbine inlet

air deicing reliability

= Modification and Exergoeconomic Analysis of a Natural Gas Heat
and Power Cogeneration System HU Jia-hao LUO Xiangdong CHEN Ying ( College of Materials and
Energy Sources Guangdong University of Technology Guangzhou China Post Code: 510006) HUA Ben ( Re-
search Center for Natural Gas Utilization South China University of Science and Technology Guangzhou China Post

Code: 510640) //Journal of Engineering for Thermal Energy & Power. —2013 28(6) . —573 ~579

On the basis of a traditional natural gas heat and power cogeneration system put forward was an improved electrici—

ty steam and hot water cogeneration system. One of the specific features of the system in question is to realize the u—
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tilization of a part or the whole of the waste heat of the cooling water in condensers by using the cooling water in the
condensers as the heat supply water source and another is to additionally install a flue gas-hot water heat exchanger
so as to fully utilize the waste heat from the flue gases. The Cycle-Tempo software was applied to simulate the heat
and power cogeneration system before and after the improvement. Based on the symbol exergoeconomics a model for
the product cost distribution of the electricity steam and hot water cogeneration system was established with the unit
economic cost of the main products such as electricity steam and hot water being calculated. Through a comparison
of the economic revenue from the sales of electricity steam and hot water between the improved version and the tra—
ditional one their cost-effectiveness was analyzed and the investment payback period was also calculated when a
simplified modification was adopted. Through the sensitivity analysis the influence of the changes in the market
prices of natural gas electricity steam and hot water on the unit exergoeconomic costs of various products economic
revenue of both systems and the simplified modification investment payback period was discussed with the results
from both exergoeconomic and economic analysis being verified. Key words: heat and power cogeneration exergo—

economic analysis symbol exergoeconomics Cycle-Tempo

= Steam Parameter Optimization of a Sintering Waste Heat Recovery
Dual Pressure System WANG Jia-quan ( Luoyang Zhongzhong Power Generation Equipment Co. Lid.
Luoyang China Post Code: 471003) SUN Zhixin DAI Yi-ping( College of Energy Source and Power Engineer—
ing Xian Jiaotong University Xian China Post Code: 710049) GAO Lin ( Xian Thermodynamics Research Insti—
tute Xian China Post Code: 710032) //Journal of Engineering for Thermal Energy & Power. — 2013 28(6).

—-580 ~584

In the light of a great amount of heat produced in the sintering process for smelting steel and iron established was a
mathematical model for sintering waste heat dual pressure power generation systems and developed was a waste heat
recovery and optimization system. In the meantime based on the particle swarm optimization algorithm with the
maximum power output serving as the objective the main parameters of a waste heat recovery system was designed
and optimized. The optimization results show that when the HP steam at the outlet of the boiler is in its superheating
state and the LP steam is in its saturation state the power output of the system will attain its maximum value. When

the optimum parameters are adopted for the system it can realize an annual value of RMB 117785000 yuan. Key



