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° Fig. 1 Schematic drawing of the model for a
tangentially fixed blade type swirling burner
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In the light of complex systems of which the state parameters was changing with time put forward was a multi-di—
mensional state monitoring method based on the big data and asynchronous information fusion with the state parame—
ters of the object being established to reflect the operating state of the equipment items. Through a case analysis of
the ash deposition and fouling degree of the heating surfaces of a utility boiler by employing the algorithm in ques—
tion a dual model and data fusion were used to enhance the modeling precision and multi-dimensionally analyze the
noise caused by a change in the quality of coal when it is filtered. On this basis the pollution degree index was es—
tablished to effectively reflect the extent of the ash deposition on the heating surfaces. Key words: big data state

monitoring ash and foul inspection and measurement radiant heating surface

= Experiment and Analysis of the Noise Sources Caused by Heating
Supercooling Water Under the Water Surface by Steam YUAN LiH4en YUAN Yi-chao YUAN Jian
et al( College of Energy Source and Power Engineering Shanghai University of Science and Technology Shanghai

China Post Code: 200093) //Journal of Engineering for Thermal Energy & Power. —2013 28(6) . —596 ~599

Analyzed were the main noise sources when heating supercooling water under the water surface by steam. Through
an experiment to heat water under the water surface by steam studied was the variation law governing the noise
when heating water under the water surface by steam. The research and analytic results show that the noise caused
by heating water under the water surface is mainly from the burst of the steam bubbles. The sound pressure level A
of the noise is directly related to the supercooling degree of water and attains its maximum value when the supercoo—
ling degree is around 35 °C to 40 °C. The above-mentioned sound pressure level A will increase with an increase of
the steam flow rate. At a given flow rate it will become smaller with an increasing growth of the hole opening area.

Key words: direct steam heating steam bubble noise supercooling degree nozzle head

= Numerical Analysis of the influence of the Air Inlet Width
on the Flow Characteristics of the Swirling Burners in a Supercharged Boiler ZHANG Liang LIU
Ming—=hu ( CSIC No. 703 Research Institute Harbin China Post Code: 150078) ZHANG Di ( College of Mechani-—
cal Engineering Harbin Institute of Technology Harbin China Post Code: 150001) //Journal of Engineering for

Thermal Energy & Power. —2013 28( 6) . —600 ~ 605
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A numerical simulation study was performed in detail of the flow characteristics of the tangentially fixed blade type
swirling burners in a supercharged boiler and the simulation results under the normal temperature and pressure con—
dition were compared with the flow resistance value in the test and the boundary of the central return flow zone pro—
vided in the literature No. 11 thus it is verified that the calculation model chosen by the authors is correct. It has
been found by analyzing the calculation results of the return flow zone distribution at various air inlet widths velocity
distribution and resistance coefficient under the pressure boosting condition that when the geometrical dimensions
are similar and other structural parameters are kept unchanged the air inlet width will assume a single-value corre—
sponding relationship. When the diffusion angle at the air outlet is constant and the swirling intensity is between 1
and 1.35 a central return flow zone will be formed and favorable to the ignition of the fuel and the stability of the
combustion. With an increase of the air inlet width the uniformity of the air distribution will get worse the maximum
axial return flow speed ( absolute value) in the central return flow zone will become smaller the maximum axial
speed in the main flow zone will become bigger the axial speeds in various sections along the flow direction will to—
tally assume a " M" shaped distribution the tangential speeds will all take on a “N”-shaped distribution the resist—
ance coefficient will exhibit a good positive proportional relationship with the swirling flow intensity. The foregoing is
identical to those given by the literature No. 15 further proving that the calculation model chosen by the authors is

rational. Key words: air inlet width flow characteristics numerical simulation swirling burner

= Testing and Analysis of the Heat Balance of a Copper Synthesizer
Waste Heat Recovery Boiler YAN Bing XIE Kai ( College of Energy Science and Engineering South
China University Changsha China Post Code: 410083) //Journal of Engineering for Thermal Energy & Power.

-2013 28(6). —606 ~610

The flue gas treatment capacity of a copper synthesizer waste heat recovery boiler is regarded as one of the main fac—
tors limiting the enhancement of the yield of the synthesizer. Through a heat balance testing and analysis of a synthe—
sizer waste heat recovery boiler proposed was a heat balance iterative algorithm for calculating the heat balance
characteristics of a waste heat recovery boiler. The research results show that when the synthesizer is under the con—
tinuous and stable operating condition the effective heat utilization coefficient and comprehensive heat exchange co—

efficient of the waste heat recovery boiler can be regarded as constants and the logarithmic mean temperature differ—



