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Fig. 1 Back pressure extraction type boiler feadwater pume twbine system
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Fig.2 Condensing type boiler feadwater pume twbine system
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Tab. 2 Contrast of the inlet steam parameters
3 of the boiler feadwater pume twbine
! /teh™! /MPa /C /m® e kg! /m? 7!
’ ’ A 387.4 11.15  436.2  0.0255 2.744
° B 147.2 1.176  482.6  0.2937 12.009
1 / N
Tab. 1 Contrast of the main steam/reheat steam
flow rate amount of heat absorbed & heat rate B A 10
of the steam turbine A B
N B B 2.744 m*/s  12.009 m’/s
A B
/t+h! 3474 3341 -3.8% A 44 .
/teh' 27852 3051 9.5%
/teh™'  2369.5 2658.4 12.2%
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/teh! 1999.7 1833.2 -8.3% A (1) 1
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Fig. 3 Contrast of the temperatures of the steam
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Fig. 4 Contrast of the main steam flow rate
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Fig.5 Contrast of the primary reheat steam
flow rate at various loads B7 FE AT AN
Fig.7 Contrast of the heat rate of the steam

turbine at various loads
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tion pressure hits 0.3896 MPa the system as a whole and the flash vaporization-dual working medium section will
all have their maximum output power being 6249.2 and 429.2 kW respectively. The thermal efficiency will first in—
crease and then decrease with an increase of the flash vaporization pressure but continuously grow with a rise of the
pressure of the dual working medium. Among them the thermal efficiency of the dual working medium cycle is in-
variably lower than that of the combined cycle. In the most cases that of the single flash vaporization cycle is basi—
cally equal to that of the combined cycle while the law governing the variation of the exergy efficiency is identical to
that governing the variation of the net output power. Key words: low temperature waste heat steam combined cy—

cle flash cycle dual working medium cycle thermodynamic analysis

1 350 MW = Analysis of the Design of a Thermal System for a 1350
MW Secondary Reheat Power Generator Unit YAN Wei—ping ZHAO Yong-ming LI Haixin ( College
of Energy Source Power and Mechanical Engineering North China University of Electric Power Baoding China
Post Code: 071003) LIU Li-heng ( Guodian Science and Technology Research Institute Nanjing China Post
Code: 210000) // Journal of Engineering for Thermal Energy & Power. —-2014 29(1). -35~40

With the design coordination between both sides of the boiler and steam turbine being taken into account in a com—
prehensive way set up was a 1350 MW secondary reheat unit principle thermal system. For different configurations
of the feedwater pump steam turbines a calculation and analysis were performed with the influence of two versions of
feedwater pump-purposed steam turbines on the reheat steam flow rate heat rate of the unit and design of the rehea—
ter etc. being quantitatively analyzed namely back pressure and extraction type and condensing type steam tur—
bine. It has been found that under the rated load operating condition the steam flow rates of the primary and sec-
ondary reheater of the back pressure and extraction type feedwater pump steam turbine thermal system are 266 and
289 t/h smaller than those of the condensing type one thus making for the design of the convection heating surface
of the boiler. Compared with the steam inlet temperatures of No. 4 and 5 heaters in the condensing type steam tur—
bine system those of the back pressure and extraction type steam turbine thermal system will lower by 350 and 297
°C respectively favorable for the design and operation of the heaters. However the heat rate of the back pressure
and extraction type steam turbine thermal system version is 6 kJ/kW. h higher than that of the condensing type
steam turbine thermal system version. Under the partial load operating conditions the calculation results show that
the primary and secondary reheat steam flow rates of the back pressure and extraction type steam turbine thermal
system is still lower than those of the condensing type steam turbine thermal system and the heat rate of the former
is still a bit excessively high. Key words: secondary reheat thermal system design of the convection heating sur—

face in a boiler feedwater pump—-purposed steam turbine
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