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Fig. 4 Sketch of the leakage model system
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Fig. 5 Variation relationship of the tube wall
temperature before the valve with

the leakage flow rate
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Fig. 6 Variation relationship of the tube wall
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Tab. 1 Comparison of the finite element calculation
results with the fitting ones
/mm /m /kg*h™! /C /C 1%
1 50 25 120 487.85 487.06 -0.162
2 50 21 200 509.75 509.48 -0.053
3 60 19 240 513.25 513.68 0.084
4 70 19 300 515.6 516.17 0.111
5 80 17 340 517.62 517.84 0.043
6 90 17 400 518.72 518.26  -0.089
7 100 15 440 520.24 519.66 -0.111
8 110 13 500 522.08 522.92 0.161
50 mm 8
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ters such as the diameter in the cross section of the spherical boss (D =5 mm 6mm and 7 mm) and arrangement
spacing ( S =10 mm 15 mm and 20 mm) the fouling quantity in a unit area of the test piece can be obtained thus
the anti-fouling rate can be calculated and then curves showing the variation law governing the weight added in a u-
nit area and antifouling rate of the test piece with time can be plotted respectively. The research results show that as
compared with those of a flat plate the weight added in a unit area of the test piece with spherical dents/bosses and
its foul growth asymptotic value will obviously go down. When the influence of the arrangement spacing on the foul
weight is being observed separately the arrangement spacing of 15 mm is deemed as the optimum arrangement spac—
ing in the range of the test at which the foul weight in a unit area of the test piece is minimum thus attaining an op—
timum antiHdouling effectiveness. If the diameter in the section of the spherical boss changes the foul weight in a unit
area of the test piece will assume a tendency of first decrease and then increase with an increase of the diameter a—
bove mentioned. In the range of the test the antidouling effectiveness is considered as the best when the diameter of
the spherical boss is 6 mm. As a result the spherical vortex generator with a combined structure of spherical dents/
bosses can be regarded as an effective element for resisting and prohibiting the foul and has a good prospect for ap-

plications. Key words: spherical dent/boss crystallization foul direct weighing antiHfouling rate

= Method for Calculating the Inner Leakage Flow Rate of a
Steam Trap Based on the Heat Transfer Theory LIU Yang LI Lu-ping ( College of Energy Source and
Power Engineering Changsha University of Science and Technology Changsha China Post Code: 410014) KONG
Hua-shan DENG You-cheng ( Hunan Hongyuan High Pressure Valve Co. Ltd. Zhuzhou China Post Code:

412100) //Journal of Engineering for Thermal Energy & Power. —2014 29(2) . -196 —-201

Based on the heat transfer theory through programming and operating by using the softwareMatlab the authors ob—
tained the data of the characteristic parameters of a valve under various leakage flow rates 1i. e. tube wall tempera—
ture before the valve. By making use of the least square method the data of the tube wall temperature before the
valve were analyzed and processed with the law governing changes of the tube wall temperature before the valve with
the leakage flow rate tube diameter and length. Finally a quantitative correlation formula was obtained by perform—
ing a fitting of the tube wall temperature and the leakage flow rate. The test data from the literature 4 was used to
verify the calculation results. The fitting formula can be employed to diagnose any fault of a steam trap. Key words:

valve leakage flow rate tube wall temperature least square method

= Analysis of the Influence of the Solid Particle Content on the—

Cavitation Characteristics of a Centrifugal Pump WANG Xiudi ZHU Rong-sheng FU Qiang ( Re-



