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Tab. 1 Calculation results of the three schemes
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Fig.5 Mach number distribution of the rotating
blade at 10% blade height in the three schemes
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= Study of the Modes for Tapping the Latent Power in Utilizing the
Waste Heat of a Gas Heat and Power Cogeneration System ZHAO Xiding FU Lin LI Feng WANG
Xiao ( Department of Architectural Technology and Science Tsinghua University Beijing China Post Code:

100084) //Journal of Engineering for Thermal Energy & Power. —2014 29(4) . -349 -354

In the light of the waste heat from the flue gases and steam exhausted from a gas-steam combined cycle heat and
power cogeneration unit described were five technologies for utilizing the waste heat namely 3S clutch technology

absorption type heat pump technology compression type heat pump technology absorption type heat pump + com-—
pression type heat pump technology and heat supply technology based on the Co-ah cycle ( absorption type heat ex—
change heat and power cogeneration centralized heat supply technology) with their enhancement in the capacity to
supply heat energy-saving and cost-effectiveness being quantitatively analyzed. Through the above-mentioned anal-
ysis the authors have come to a conclusion that all the five technologies can be used to enhance the heat supply ca—
pacity and the heat supply technology based on the Co-ah cycle however can lead to a maximal rise in the heat
supply capacity. An analysis of the energy-saving performance leads us to conclude that all the five technologies can
achieve their respective energy-saving effectiveness but the heat supply technology based on the Co-ah cycle can ac—
complish the most outstanding energy-saving effectiveness. An analysis of the cost-effectiveness induces one to con—
clude that under the condition of increasing the unit heat supply capacity ( 1 MW) if the absorption type heat pump
technology and the heat supply technology based on the Co-ah cycle were adopted the initial investment would be
slightly higher than those of the others and the savings in the operation cost however would be relatively more obvi—
ous. With the factors in the two aspects i. e. a rise in the heat supply capacity and cost-effectiveness being consid—
ered in a comprehensive way the heat supply technology based on the Co-ah cycle is regarded as having more lead—
ing edges. Key Words: heat and power cogeneration absorption type heat exchange waste heat recovery from flue

gases waste heat recovery from the steam exhausted

= Study and Applications of the Methods for Designing the
Positive Problems Relating to the Controllable Diffusion Blade Profile WANG Qi MA Yun-=xiang
ZHAO Duo WANG Yu+jing ( CSIC No. 703 Research Institute Harbin China Post Code: 150060) //Journal of
Engineering for Thermal Energy & Power. -2014 29(4). -355-360

Based on the ideas for designing the positive problems developed was a method for geometrically modeling a CDA
custom—ailored blade profile. A dual-arc intermediate arc line and multi-section arc thickness distribution parame—
terizedly designed as well as the elliptical leading edge were adopted to realize an aim to control the air flow on the
blade surfaces of a compressor and not produce any separation. It has been found that compared with conventional

blade profiles the CDA blade profile thus designed can obtain an even higher pressure ratio and efficiency. The in—
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formation about the flow field such as Mach number and limit streamlines etc. indicates that the CDA blade profile
can effectively prohibit the production of shock waves and separation of boundary layers and improve the status of
the air flow inside the compressor. The method in question can shorten the design time of the blades in a large a—
mount thus contributing to applications in engineering projects. Key Words: controllable diffusion blade profile

positive problem blade design

PIV = Visualization Study of the Flow Field in a Rotor Cas-
cade of a Turbine Based on the PIV Measurement and Testing Technology MA Chao GE Bing ZANG
Shu-sheng ( College of Mechanical and Power Engineering Shanghai Jiaotong University Shanghai China Post

Code: 200240) //Journal of Engineering for Thermal Energy & Power. —2014 29(4). -361 -366

In the light of four operating conditions at four rotating speeds from 780 to 1680 r/min of a rotor blade cascade of a
turbine with its design rotating speed being 1 500 r/min experimentally studied was the PIV ( particle image veloci—
metry) technology in measuring the inner flow field by employing dry ice as the tracer particles and obtained were
2D distribution of the speed field and vorticity field in the middle section and its downstream areas of the flow passa—
ges of the rotor blade cascade. It has been found that the transient results measured by using the PIV technology
can capture very well the formation and evolution process of the vortices separated from the trailing edge of the rotor
blade cascade. Within the operating conditions under the test the velocity at the outlet and the downstream of the
rotor blades continuously increased while the velocity of the gas in the flow passages was characterized by its first in—
crease and then decrease with an increase of the rotating speed of the rotor blades. The output power of the blade
wheel had a same variation law governing the air flow speed in the flow passages. In adjacent to the design rotating
speed operating condition the intensity of the vorticity field in the flow passages of the rotor blades was relatively
weak and with a decrease of the rotating speed of the blade wheel the intensity of the vorticity field inside the flow
passages of the cascade especially in the downstream of the suction surface of the rotor blades was obviously en—

hanced. Key Words: rotor blade cascade PIV testing laser visualization flow field analysis

= Study of the Influence of the Participation of a Super-
critical Unit in the Primary Frequency Modulation on the Service Life of a Steam Turbine WANG
Xu-rong DAI Yi-ping( College of Energy Source and Power Engineering Xi” an Jiaotong University Xi’ an China
Post Code: 710049) LI Fu-shang ( Shandong Electric Power Research Institute Jinan China Post Code:
250000) ZHANG Ya+u ( Xi’ an Thermodynamics Research Institute Co. Ltd. Xi’ an China Post Code:

710032) //Journal of Engineering for Thermal Energy & Power. -2014 29(4). -367 -373



