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Fig. 1 Structure of a five-pad tilting-pad

sliding bearing
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Fig. 2 Oil film pressure distribution at

various rotating speeds
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Tab. 1 Minimum oil film thickness stiffness and

damping values at various rotating speeds

/ Kyx Kyy Cxx Cyy
remin =" Ay /mm /Nemm ™' /Nemm ™' /NeSemm ™' /N+Semm ™'
2000 4.08E-2 1.27ES 1.03E5 6.67E2 5.94E2
3000 4.26E-2 1.51E5 1.34E5 5.58E2 5.22E2
4000 4.65E-2 1.71E5 1.56E5 4.81E2 4.81E2
4500 4.72E-2 1.78E5 1.64E5 1.64E2 4.30E2
4750 4.78E -2 1.81ES 1.68E5 4.35E5 4.17E5
5000 4.82E -2 1.84E5 1.71E5 4.21E5 4.04E5
5500 4.89E -2 1.90E5 1.77E5 3.95E5 3.80ES5
6000 4.95E-2 1.94E5 1.82E5 3.71E5 3.58E5
7000 5.01E-2  2.01E5 1.89E5 3.30E5 3. 19E5
1
0.04 -0.05 mm
0.02 mm.
° KXX\KYY
Cxx~Cyy
2 - 0Z
. . 13 - 14 07
. OZ
XX xy cx.( ny
K = L C = ' (1)
C C
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= 2.1 x10°P 0.3 7 800 kg/m” o
ks, ky + K 1L U, Q> ? rm
(2)
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- [ C. C, + 6, ; 5
C)'x -G, va Tab. 2 Parameters of a shaft section unit
[kxx + K1 kx)‘ /mm /mm
k., k, + K, Ll 21 30
12 306 128.8
MU + CU + KU = 0 (3) 1 1 1332
. 14 586 152
U=Ye"  U=Ye" U=rYe" s 50 15
' L6 114 133
(M +XC+K)Y =0 (4) 17 9 33
: L8 80 90
HE MR R IR
K CHAY: R0 - MIRAY L10 208.9 60
X:[Y A:[O I]B:[I 0]
AY K C 0 -M 3
AX = ABX A Tab. 3 Parameters of a rotating disk node unit
/k
£ /kg * m? /kg * m?
- 1 1.53 4.5E -3 2.25E -3
2 102.27 4.6 2.3
- 3 12.85 0.12 0.06
CAP1400 3 4 1.984 1.4F -3 7E -4
( 2) ( 3) . (
( 1) o 3.2

367.6 kg 4 750 r/min; 4( a) o
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Tab. 4 Critical speeds under different supports
6231.13 6304.03 17015.24 21850.6
5611.27 5650. 49 12713.24 13664.37
5541.60 5590. 05 12435. 60 13178.70
“ 7 8100. 43 8777.20 13251.43 14381.26
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Fig. 4 Campell diagram of a tilting pad bearing

under various supports
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“ ” 5 CAP1400
“ ” 8 100 —8 777 r/min Tab.5 Onine vibration testing of a CAP1400 main
“ ” . feedwater pump under various operating conditions
v H A
/ / / / / /
Lo« » mm mm e s-l omm mmes-! mm mmes-
CAP1400 4750 r/min 1.8 2.1 0.018 2.0 0.011 1.3 0.012

N N o

4
CAP1400
5 o JB/T8097
6
AY 5 o
B5 CAP1400 A £ £ 2 K RIRHLIX I
Fig.5 Ondine test of a CAP1400 main
feedwater pump in a conventional island
4 Q <2 500 m’/h
Q>3 000 m’/h
4.5 mm/s; 2 500 m’/h <
(Q <3000 m’/h
2.8 mm/s
0.038 mm CAP1400
30 -39 C
35-46 C N 5%Co
CAP1400 -

3350 m*®/h
1.6 0.014 1.6 0.011 1.4 0.014
2.0 0.012 2.1 0.012 1.4 0.014
3200 m® /h
1.5 0.015 1.6 0.009 1.4 0.009
2.9 0.022 2.4 0.012 1.7 0.012
3000 m®/h
2.0 0.015 2.7 0.016 2.0 0.010
2.2 0.013 1.9 0.012 1.5 0.009
2 800 m*/h
1.5 0.012 1.6 0.011 1.2 0.011
3.1 0.012 2.1 0.011 1.7 0.008
2500 m*/h
1.9 0.008 2.2 0.012 2.1 0.008
3.6 0.014 3.3 0.014 2.5 0.023
1500 m*/h
3.5 0.011 3.8 0.015 3.2 0.010
5
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(1) N o

2 000 =7 000 r/min
0.04 —0.05 mm

o K, K, ;
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1.8 N o
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na Post Code: 150001) //Journal of Engineering for Thermal Energy & Power. —2014 29(4). -434 —438

To comparatively precisely calculating the resistance characteristics of a waveform plate inertial separator the au—
thors combined the orthogonal test method with the numerical simulation. On this basis the influence of different
numerical calculation methods on the resistance characteristics of the waveform plate inertial separator was discussed
and an optimum numerical simulation method was obtained through a range analysis. It has been found that when
the inertial separator is numerically simulated the turbulent flow model has a biggest influence on the calculation re—
sults the discrete format has a slightly small influence and the pressure difference compensation and pressure-speed
coupled algorithm has a smallest influence among which the combination of RNG k — g turbulent flow model Sim—
plec algorithm second-order pressure interpolation and Quick discrete model has an error of 6. 8% in predicting the
resistance characteristics of the waveform plate separator. Key Words: inertial separator orthogonal test numerical

simulation test verification

CAP1400 = Dynamic Analysis of the CAP 1400 Rotor of a Feedwater
Pump in the Conventional Island of a Nuclear Power Station MIAO Fang-ming CHEN Ning ZHANG

Jiang—tao ( Shanghai Electric Power Repairing and Manufacturing Factory Co. Ltd. Shanghai China Post Code:
201316) //Journal of Engineering for Thermal Energy & Power. —2014 29(4) . -439 —444

In the light of the problems relating to the safety and smooth operation of the CAP1400 tilting-pad sliding bearing—
rotor system of a feedwater pump in the conventional island in a nuclear power station by using the finite element
QZ algorithm calculated was the critical rotating speed under various supporting conditions. Firstly a tilting-pad
bearing with five pads were designed and such non-inear dynamic parameters of the bearing as the oil film thick—
ness stiffness and damping etc. were calculated. Secondly a model for bearing—rotor systems was established and
the solutions to the critical rotating speed of the tilting-pad bearing—rotor system under the rigid supporting elastic
supporting and “wet-state” supporting conditions were sought by using the characteristic data of the oil film. Final-
ly an ondine test was performed of the feedwater pump and the vibration values in various directions and at different
locations at various flow rates were acquired. It has been found that when the oil film thickness of the tilting-pad
bearing is between 0.04 mm and 0.05 mm its stiffness will increase with an increase of the rotating speed and the
damping will be in this contrary. The critical rotating speed under a rigid supporting will be higher than that under
the elastic supporting while an increase of the stiffness of the water film under the “wet-state ” condition will make
the first-order critical rotating speed be in a range from 8 100 r/min to 8 777 r/min far higher than the actual oper—
ation rotating speed. All the vibration values and the vibration speeds of the bearing measured during the test in the
vertical horizontal and axial direction meet the national standards. The calculation result of the eritical rotating

speed and the test one can offer a design basis for safe and smooth operation of the tilting-pad bearing—rotor system
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of CAP 1400 conventional island feedwater pumps. Key Words: tilting-pad bearing rotor system critical rotating

speed conventional island CAP1400

= Analysis of the Causes for Frequent Tube Rupture
at a Same Location in the Last-stage Superheater of a Boiler and Its Prevention LI Jian LIU Fang—
zhu ( Planning Department Shandong Huaneng Laiwu Thermal Power Generation Co. Ltd. Laiwu China Post

Code: 271102) //Journal of Engineering for Thermal Energy & Power. —2014 29(4) . -445 -448

Three tube rupture accidents ( accumulatively operated only for 30000 hours/set) happened continuously at a same
location of the last-stage superheaters of two 330 MW subcritical boilers in a thermal power plant since the lower
half of the year 2012 and created a great economic loss. The power plant has done a great deal of work to identify
the causes and inspected the headers tubes and tube materials at the inlet of the stage Il water sprayed desuperheat—
er and the last-stage superheater ( foreign matters and mill scale) finding no abnormalities and forcing the analytic
work of the tube rupture causes falling in a plight. Beginning from the adjustment in operation and through an in—
depth analysis of a great deal of operation parameters and the structure of the headers at the inlet of the last-stage
superheaters the authors have arrived at a conclusion that these tube rupture accidents are caused by a short-time
falling-off of mill scale under the specific conditions and formulated preventive measures for this special purpose.

Key Words: subcritical boiler last-stage superheater tube rupture cause

= Analysis of the Self-excited Vibration Source of a Turbo-generator
Unit HE Guo-an ( Xi” an Thermodynamics Academy Co. Lid. Xi”an China Post Code: 710032) LIU
Kun WANG Wei-min ( Qinhuangdao Qinre Power Generation Co. Lid. Qinhuangdao China Post Code:

066003) //Journal of Engineering for Thermal Energy & Power. —2014 29(4) . -449 —-454

The self-excited vibration is regarded as a fault often taking place in turbo-generator units. Although the self-excited
vibration can be attributed to the following two aspects: insufficient stability of bearings and steam flow excited vi—
bration yet it is very sophisticated to identify any specific excitation vibration source. In combination with four ca—
ses various self-excited vibration sources such as poor self-alignment ability of bearings dropping of the elevation of
the bearings clearance and seal excitation vibration etc. were analyzed and corresponding countermeasures were
given to solve the practical problems in engineering projects thus offering reference for diagnosing and disposing the
self-excited vibration faults happening in turbo-generator units. Key Words: turbo-generator unit self-excited vi—

bration source bearing stability steam flow excited vibration vortex momentum



