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Fig. 1 Vertical arrangement of the burners
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Fig. 2 Plan arrangement of the burners
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Fig.3 The grid of the whole boiler
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Tab. 3 Parameters of the spout
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Fig. 11 Velocity vector of the middle section

at the outlet of the furnace
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Fig. 12 Velocity vector of the cross section of

the side wall at the outlet of the furnace
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Fig. 13 Heat load distribution on the superheater of

the division platen along the direction of the furnace
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Fig. 14 Heat load distribution on the superheater of

the rear platen along the direction of the furnace
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steam. When the working medium is water in the case of the pressure difference of the first-stage lithium bromide
steam and the intermediate solution is between 3.5 kPa and 3.8 kPa the dual-stage solution pump can be put into
operation and the start-up time duration will decrease with an increase of the submerging height. When the working
medium is lithium bromide solution with an increase of the solution concentration the pressure difference required
for starting up the dual-stage bubble pump will increase and be greater than that when the working medium is wa—
ter. The start-up time duration will increase with an increase of the concentration when the lithium bromide solution
concentration is in a range from 45.5% to 54% while it will decrease with an increase of the concentration when
the lithium bromide concentration falls in a range from 54% to 59.5% . When the lithium bromide solution concen—
tration is 54% the start-up time duration arrives at its maximum value. Key Words: dual-stage bubble pump

pump start-up phenomenon intermediate solution absorption type refrigeration pressure difference

1 000 MW = Simulation and Analysis of the Low Nitrogen Coaxi-
al Combustion System of a 1 000 MW dual-tangentially-fired Boiler JIANG XiaoHeng ( Shanghai Pow—
er Generation Complete Equipment Design Research Institute Shanghai China Post Code: 200240) //Journal of

Engineering for Thermal Energy & Power. -2015 30(1). -58 —65

With a 1 000 MW single furnace and dual-tangentially-fired boiler in a power plant serving as an example a numer—
ical simulation method was used to analyze the characteristics of the flow field in its low nitrogen coaxial combustion
system in the furnace. In this process the distribution of physical variables such as the temperature and speed etc.

in the single furnace dual-tangentiallyfired boiler was obtained with the influence of the horizontally offset overfire
air and separated overfire air ( SOFA) on the slagging flue gas temperature deviation and NO emissions etc. being
identified. It has been found that the deviation of the flue gas speed of the dual-tangentiallyfired combustion mode
is less than that of the single<angentiallyfired combustion mode. The corners of a furnace are divided into hot cor—
ners and cold ones. Influenced by the distribution of the cold corners only a moderate air speed of the horizontally
offset overfire air can lead to the “coal-surrounded-by-air” characteristics and prevent from slagging. The reverse
tangential supply of the separated overfire air can force the thermal deviation of the heating surfaces to decrease the
center of the flame to move upwards and NO concentration to gradually increase. In such a case the setting of the
SOFA swaying angle should be taken into consideration in a comprehensive way depending on the safety of the heat-
ing surfaces coal characteristics and NO emissions. Key Words: single furnace and dual-tangential low nitrogen

coaxial combustion system horizontally offset overfire air separated overfire air ( SOFA) slagging thermal deviation



