新能源动力技术

文章编号:1001-2060(2015)01-0129-09

基于动态仿真模型的 SAPG 系统热力特性研究

崔 凝¹,马士英¹,吴铭棉²

(1. 华北电力大学, 河北保定 071003; 2. 保定华仿科技股份有限公司, 河北保定 071051)

摘 要: 提出了以直接产生蒸汽型槽式聚光集热系统(Direct Steam Generation in Parabolic Trough Collectors ,DSG – PTC)为 辅助热源的太阳能热辅助燃煤机组一体化发电系统(Solar Thermal Aided Power Generation ,SAPG)的6种集成方案;利 用动态仿真模型从系统的层面研究了 SAPG 系统的运行特 性,反映了两种能源系统间热力参数的匹配规律,验证了相 关文献[2,7–9]所列举的 SAPG 系统各种集成方案的可行 性;仿真试验分析了太阳进出云层过程 SAPG 系统动态响应 特性;从热力学的角度计算分析了不同集成方式的 SAPG 系统热经济性 给出了最佳集成方案。

 关键 词: 直接产生蒸汽; 抛物面槽式聚光集热; 太阳能热 辅助燃煤机组发电; 动态模型; 仿真
 中图分类号: TM615; TK08 文献标识码: A
 DOI:10.16146/j.cnki.rndlgc.2015.01.034
 引言

太阳能热辅助燃煤机组一体化发电系统(Solar Thermal Aided Power Generation,SAPG) 是在常规燃 煤发电机组基础上,合理集成太阳能光热系统组成 的集热式太阳能复合热发电系统,是实现太阳能大 规模利用和燃煤机组深层次节能的有效途径和技术 方向^[1-2]。直接产生蒸汽型槽式太阳能集热系统 (Direct Steam Generation in Parabolic Trough Collectors,DSG-PTC) 因更安全环保、电站配置更简单、运 营成本更低、热效率更高等优势^[3],两个能源系统 间的工质具有良好的互补性和互换性,PTC 是 SAPG 系统理想的辅助热源系统^[4]。

近年来国内外学者和机构围绕 SAPG 系统的可 行性、各集成方案的热经济性、性能计算、系统优化、 控制策略设计等开展了富有成效的研究工作。文献 [1]较早提出了以太阳光热代替汽机抽汽加热给水 的思想,并以一台燃煤机组为例分析了 SAPG 系统 的热经济性; 文献 [5]利用 TRNSYS 软件开发以 PTC 系统辅助 300 MW 燃煤机组的 SAPG 系统性能 计算模型; 文献 [6]利用 SAM 软件开发了 PTC 系统 模型,与 600 MW 火电机组性能模型结合,研究相同 规模太阳能场的 SAPG 与聚光类太阳能热发电 (Concentrating Solar Power, CSP)的经济性,表明 SAPG 中的集热系统年发电能力比纯 CSP 高出 25%; 文献 [2,7-9]基于不同方法建立以 PTC 为辅 助热源的 SAPG 系统热力性能模型,研究不同的集 成方式、PTC 热力参数及机组容量等因素对 SAPG 热经济性的影响,提出了 SAPG 热经济性评价标准, 探讨了 SAPG 的耦合机理。

本研究基于相关文献 [3,10-11]设计不同容 量和流程的 DSG-PTC 热力系统,基于已取得的研究 成果 [12]建立对应的 DSG-PTC 系统实时动态仿真 模型,利用模型校验设计数据,根据各集成方案将 DSG-PTC 热力系统动态模型及已开发 300 MW 火电 机组仿真模型耦合为 DSG-SAPG 系统全工况实时动 态仿真模型,利用模型从系统的层面分析 SAPG 的 热力特性及热经济性。

1 DSG-SAPG 系统集成

1.1 DSG-PTC 热力系统设计

基于 Spanish-German 联合工程公司根据 IN-DITEP 计划在西班牙 Almeria 建造的首个 5 MW 非 蓄热装置的 DSG 型槽式太阳能热动力电站(IN-DITEP 电站)的系统流程及结构布置,参考文献 [10]中的太阳能场设计参数,设计非蓄热型再循环 式 DSG-PTC 系统^[11]。考虑承压能力,集热器选用 ET – 150 型,集热阵列南北向水平布置,东西向单轴 跟踪,管路布置采用中心供给方式,汽水分离器分散 式布置,其总体结构及其系统流程如图 1、图 2 所

收稿日期:2014-08-21; 修订日期:2014-10-09 作者简介:崔 凝(1969-),男,河北衡水人,华北电力大学副教授.

示 聚光集热器主要性能参数如表1所示。

图 1 DSG-PTC 集热阵列结构图

Fig. 1 Structural drawing of the DSG-PTC heat collection array

表1 ET-150 型聚光集热器主要性能参数^[10]

Tab. 1 Main performance parameters of an ET - 150 type light-gathering heat collector^{10]}

参数	数值
聚光器光孔宽度/m	5.76
聚光器焦距/m	1.71
聚光器类型	ET – 150
聚光比	82:1
集热模块长度/m	12.27
集热单元数量(每个模块)	8
单台聚光器长度/m	98.5
接收管截面积/cm	24
接收管内径/mm	55
接收管外径/mm	70
玻璃罩管内径/mm	109
玻璃罩管外径/mm	115
定位布置方式	南北向水平
跟踪方式	单轴
光学截取因子	0.92
峰值光学效率	75%
玻璃罩管透过率	0.945
镜面反射率	0.92
太阳辐射入射角/(°)	13.7
集热管涂层吸收率	0.94
吸收管内壁相对粗糙度	7.23e-4

1.2 300 MW 燃煤发电机组

以典型 300 MW 燃煤发电机组作为集成 DSG-SAPG 系统的参考机组(国电集团宝鸡第二发电有 限责任公司1号机组):锅炉为 DG1025/18.3 - II 9 型亚临界、一次中间再热、自然循环、单炉膛、平衡通 风、四角切圆燃烧、全钢架悬吊结构; 汽轮机为 N300 -16.7/537/537-4型(合缸)、亚临界、中间再热、 两缸两排汽、凝汽式(全电调型);发电机为 QFSN-300-2-20型3相汽轮发电机;集散控制系统 DCS 为北京国电智深控制技术有限公司研制的 EDPF, 机组采用单元集中控制 校核煤种低位发热值为 18 054 kJ/kg。

图 2 DSG-PTC 系统流程示意图

Fig. 2 Schematic diagram of the flow path of the DSG-PTC system

1.3 集成方案

常规燃煤发电机组做功工质的温度跨度较大, DSG-PTC系统蒸汽参数与其具有较大的重叠度,为 两系统的集成提供了多种可能方案。考虑到 DSG-PTC 材质所允许的最高工质参数(压力 10 MPa,温 度 500 - 540 ℃)以及 300 MW 燃煤机组锅炉侧汽水 压力均在 16 MPa 以上^[11],按照多能源互补系统中 "温度对口,梯级利用"的原则拟定两系统间各种集 成方式,组成燃料节省型的 DSG-SAPG 系统^[5], DSG-PTC 系统蒸汽流量不超过燃煤机组汽轮机各 部分所允许的最大通流能力,对汽轮机相对内效率 影响较小。

方案 1、方案 2 和方案 3: DSG-PTC 系统的给水 来自燃煤机组给水泵抽头 经预热、蒸发和过热后的 蒸汽分别引入汽轮机 1 号、2 号和 3 号高压加热器 抽汽管路替代燃煤机组的 1 段、2 段和 3 段抽汽加 热相应的给水,方案 1 系统流程如图 3 所示。方案 4: DSG-PTC 系统给水来自燃煤机组凝结水泵出口, 经预热、蒸发和过热后的蒸汽引入汽机 1 号高压加 热器抽汽管路替代燃煤机组的 1 段抽汽加热给水。 方案 5: DSG-PTC 系统给水同方案 1 ,过热蒸汽引入 汽机再热器冷端入口,与高排蒸汽混合后进入锅炉 再热器。方案 6: DSG-PTC 系统给水来自燃煤机组 凝结水泵出口,经预热、蒸发和过热后的蒸汽引入端 同方案 5。方案 2 – 方案 6 的系统流程图略。

Fig. 3 Flow chart of the thermodynamic system of the DSG-SAPG unit in the version No. 1

1.4 DSG-PTC 系统热力参数

以两系统集成端的燃煤机组工质热力参数作为 DGS-PTC 系统给水入口和蒸汽出口参数,以我国西 部某地区气象条件作为环境设计参数^[13],通过编程 对上述6种集成方案中的集热系统在各太阳时进行 热平衡计算和压降计算,根据计算结果调整各受热 段聚光集热单元数量,逐一完成 DSG-SAPG 系统方 案1-方案6中的 DSG-PTC 系统的静态热力设计计 算,各集热系统热力设计参数如表2所示。

表 2 DSG-PTC 系统热力设计参数

Tab. 2 Thermodynamic design	parameters of the	DSG-PTC system
-----------------------------	-------------------	----------------

方案	预热段入口 水温度/℃	预热段入口 水压力/MPa	出口过热蒸 汽温度/℃	出口过热蒸 汽压力/MPa	预热段出 口水温/℃	最大蒸汽流 量/t・h ⁻¹	集成节点 汽温/℃	集成节点 汽压/MPa
方案1	201	7.05	383	5.85	249	61	382	5.79
方案2	190	4.42	330	4.12	229	81	329	3.88
方案3	166	1.84	429	1.66	196	34	428	1.56
方案4	107	7.10	383	5.85	209	61	382	5.79
方案5	194	4.18	333	3.84	234	60	333	3.78
方案6	104	4.18	333	3.82	217	60	333	3.78

2 DSG-SAPG 系统实时动态仿真模型

以两系统集成端的燃煤机组给水与蒸汽参数和 集热系统的环境设计参数为边界条件,基于已取得 的研究成果^[12],分别建立对应的 DSG-PTC 系统实 时动态仿真模型。根据不同工况下模型计算结果校 验、调整热力数据,再次进行静态热平衡计算,直到 模型计算结果与 DSG-PTC 系统的各工况热力数据 误差满足工程需要,最终确定了表2所示的 DSG-PTC 系统热力设计参数,同时完成了各集热系统动 态仿真模型的建立。

以所选燃煤机组为对象,保定华仿科技股份有限公司团队开发了300 MW 亚临界燃煤机组仿真培

训系统(FPG-Simu),该仿真培训系统于2014年4 月25日通过电厂组织的测试验收。

根据 1.3 节提出的两类能源系统的 6 种集成方案,分别将对应的 DSG-PTC 系统仿真模型与 FPG-Simu 仿真系统集成为以燃煤发电机组为主,DSG-PTC 系统辅助加热其工质的 DSG-SAPG 系统动态仿 真模型,各方案对应的动态仿真模型分为 DSG-SAPG-Simu1-6。

3 DSG-SAPG 系统运行特性分析

利用 DSG-SAPG-Simul - 6 模型研究不同集成 方案的 SAPG 系统运行特性。DSG-PTC 系统启动与 停止过程参考文献 [12]。 图 4 为利用 DSG-SAPG-Simul 模型模拟方案 1DSG-SAPG 系统在夏季 05:51 - 18:50 期间运行过 程中主要参数的变化,采样周期 60 s。06:00 之前, 集热系统旁路阀全开 蒸汽通过旁路进入凝汽器 燃 煤机组为独立运行模式^[8];06:00 时集热系统蒸汽 参数满足系统集成要求,逐渐关闭旁路电动阀,同步 开启主蒸汽电动阀,通过调节阀控制汽压,集热系统 并入燃煤机组,两系统以 SAPG 模式运行;18:31 时 集热系统参数与燃煤机组集成端工质参数不匹配, 集热系统从燃煤机组切除,旁路电动阀、主汽电动阀 启闭过程与并汽过程相反。

图 4 DSG-SAPG-Simul 模型模拟 SAPG 系统运行特性

Fig. 4 Operation characteristics of the SAPG system when DSG-SAPG-Simul model is used to simulate the SAPG system

假定聚光集热器光学效率不变,由图 4(a)可 知,7:50-15:50间,集热系统蒸汽流量在 55.98-61.04 t/h间小幅缓慢波动;因太阳直接辐射强度 (Direct Normal Irradiation,DNI)和集热器几何效率 的变化,7:50之前,蒸汽量从并汽前的 21.62 t/h 逐 渐增大;15:50 之后,蒸汽流量从 57.52 t/h 逐渐减 小,直至集热系统切除时的 10.10 t/h。通过控制集 热系统给水流量、调节蒸汽出口阀门以及减温喷水, 可维持蒸汽参数的稳定性(17:50 后因 DNI 快速下 降使蒸汽温度由 385 ℃降低至 328 ℃);运行过程中 燃煤机组协调系统根据负荷/主汽压指令实时调节 汽机高压调节门开度和燃料量,使得两系统集成端 蒸汽参数基本稳定。

DSG-PTC 系统并汽过程中(06:00-06:03),约 25.4 t/h 的蒸汽在 3 min 内进入汽机 1 段抽汽管路, 对机组产生一定的冲击,电功率由 299.99 MW 突升 至 300.49 MW,协调系统响应负荷要求,快速关小 高压主汽调节门的同时降低燃料指令(燃煤量由 144.42 t/h 突降至 141.70 t/h),主汽流量、给水流 量及凝结水量分别下降了 13.05、9.24 和 19.12 t/ h;因 DSG-PTC 系统的给水来自给水泵抽头,为了维 持除氧器水位,凝结水流量在并汽时阶跃降低约 20 t/h 后逐渐回升,给水流量则随主汽流量变化,如图 4(b)所示。随着集热系统进入燃煤机组的蒸汽量 增加,为保证电功率稳定,燃煤量逐渐减小,主汽流 量相应下降;尽管各段过热器受热面吸热量降低,但 通过调节过热器减温喷水量,保持了主汽温度的稳 定性。

如图 4(c)、图 4(d) 所示,因集热系统蒸汽排挤 汽机1段抽汽 其抽汽量随之下降 相应地各段抽汽 量均发生不同程度地改变。1 段抽汽返回汽机通流 部分做功 高压缸排汽量增加 高排汽温升高(汽压 与汽温变化相同);2段抽汽来自高排,加之主给水 流量逐渐降低,为维持2号高压加热器汽水间的能 量动态平衡 2 段抽汽量从并汽前的 78.13 t/h 减小 至 15:50 时的 75.01 t/h。尽管进入再热器蒸汽量 增加 但因机组燃煤量降低 致使再热器总吸热量减 少(壁式辐射、中温及高温再热器工质吸热量之 和) 油并汽前的 415.45 GJ/h 最低降至 08:32 时的 393.32 GJ/h 故再热器出口汽温下降(最大降幅≤ 5℃) 使其后各段抽汽温度均有所降低(如5段抽 汽温度最大降幅≤4℃)。因进入各加热器的水温 基本不变或略微升高 加之给水流量降低 小汽机用 汽量减少 故3段、4段抽汽流量均略微降低(最大 降幅≤1.17 t/h); 汽机排汽量升高源于集热系统蒸 汽量不断增加 任一时刻排汽量等于主汽流量减去 各段抽汽量与轴封蒸汽量。DSG-SPAG 系统运行过 程中 回热系统相关热力参数的变化与利用等效热 降法、小扰动理论法研究燃煤机组回热系统变工况 的分析结论基本一致^[14-15]。因汽机高压缸排汽压 力、温度升高,而主汽压力及温度基本不变,导致高 压缸内效率有所下降;而中压缸进汽、排汽参数同步 变化,加之进入中压缸的蒸汽流量增加,所以中压缸 内效率略微升高。

随集热系统蒸汽量降低,相关热力参数呈相反 趋势变化,这里不再赘述。因篇幅所限,方案2-方 案6的DSG-SAPG系统主要参数曲线变化及分 析略。

4 SAPG 系统动态响应特性研究

以方案1的 SAPG 系统仿真模型为基础,进行 典型扰动的仿真试验,从系统层面研究 SAPG 系统 动态响应特性。

在众多环境因素中,太阳能辐射强度对DSG-PTC系统运行特性的影响最显著,且辐射强度阶跃 变化较频繁。图 5 为额定工况下,利用DSG-SAPG-Simul 模型模拟太阳进出云层过程中DSG-SAPG系 统热力特性变化,试验持续60 min,采样周期10 s, 试验前后假定太阳直接辐射强度DNI不变。试验 过程:12:10:00 太阳开始逐渐被云层遮挡,12:14: 00 完全被云层遮挡,12:18:00 太阳开始逸出云层, 12:24:00 脱离云层。

随集热系统吸收太阳能辐射热逐渐减少 其蒸 汽流量和压力分别由 12:10:00 时的 58.76 t/h、 5.80 MPa 快速下降 最低至 12:19:20 时的 18.39 t/ h 和 5.609 MPa 汽温则由 382.66 ℃下降至 12:15: 00 时的 320.68 ℃后因减温喷水流量的减少而逐渐 升高 受此影响 两系统集成节点的汽温和汽压随之 发生相同的变化(如图 5(a) 所示)。随集热系统蒸 汽量减少 1 段抽汽流量相应增长 最高达到 12:18: 50 时的 41.22 t/h,以维持锅炉给水温度;而高压缸 排汽流量和汽温随之同步降至最低点(872.71 t/h 和 328.34 ℃),使汽机排汽量随之减少,电功率下 降,在协调系统作用下,适当增加高调门开度,主汽 压力略微下降,同时增大燃煤量,最高至12:19:20 时的143.03 t/h,主汽流量随之增加,12:19:50 时达 到最高值 930.93 t/h; 因燃煤量增加和再热蒸汽流 量降低的双重作用 再热汽温于 12:22:00 时达最高 值 539.31℃ ,主蒸汽温度则在减温喷水调节下略微 变化后即保持不变(如图 5(b) 所示)。由于集热系

统所需给水量减小,因而燃煤机组凝结水流量随之 同步降低,而主给水流量的变化则受汽包水位调节 作用,基本与主汽流量变化过程和幅度一致;因主给 水流量增加,加之汽机高排汽温下降使得2段抽汽 温度下降,故2段抽汽流量增加;因凝结水流量下 降,加之再热汽温升高使得3段、4段抽汽温度升 高,故3段、4段抽汽量呈下降趋势;由于给水量的 变化影响小汽机用汽量,加之凝结水流量减小以及 除氧器压力变化,使4段抽汽量产生波动;锅炉给水 温度的下降源于给水量增加以及1段抽汽量不足所 致如图5(c)所示。

试验后期 随着太阳逸出云层直至脱离云层 ,集 热系统蒸汽流量逐渐增加 ,各参量的变化大致与试 验前期对应参数的变化相反。在控制系统调节和热 力系统自平衡作用下 ,DSG-SAPG 系统逐渐恢复至 试验前状态。由于系统中各环节的热惯性及容积惯 性 ,热力参数变化滞后于太阳能辐射强度的变化 ,并 产生了不同程度的超调量 ,与热力系统动态响应特 性和调节过程相符;上述参数的变化与符合热力系 统中工质流动与传热过程 ,即反映工质流动特性的 压力与流量变化基本同步 ,响应较快 ,反映工质传热 特性的温度则因热惯性而滞后于流动的变化 ,并且 受流量和换热量的影响 ,其变化过程也不同于压力 和流量。

5 SAPG 系统热经济性

将太阳能热量及高能工质引入燃煤发电机组 中 必然引起锅炉、汽轮机及其热力系统参数的变 化,导致机组热力性能改变;而两个能源系统间不同 的集成方案,使 DSG-SAPG 系统的热经济性势必有 所差异。利用 DSG-SAPG 系统动态仿真模型,可计 算任意时刻或任一时间段内某子系统或整体系统的 热经济性。针对 6 种集成方案的 DSG-SAPG 系统, 从 06:00 时的 DSG-PTC 系统并汽开始,至 18:34 时 的 DSG-PTC 系统从燃煤机组切除结束,在相同边界 条件及初始条件与负荷下分别同时运行 FPG-Simu 模型与 DSG-SAPG-Simu1 - 6 模型,累计计算各自的 发电量、燃煤消耗量以及集热系统吸收太阳能直接 辐射热量(如图 4(a) - 图 4(c) 所示),为不同方案 的 DSG-SAPG 系统热经济性比较以及与对应燃煤发 电机组比较提供基础数据。表 3 为上述模型有关指 标数据的累计计算结果。

发电机组的平均发电效率:

$$\eta_{\text{pave}} = \frac{P_{\text{sum}}}{F_{\text{csum}} \cdot Q_{\text{cnet}}} \cdot 100\%$$
(1)

针对节省燃料型的 DSG-SAPG 而言,将一段运

行时间内所节省的燃料可折合为 DSG-PTC 系统平 均发电功率^[6],计算平均光电转换效率,分析 DSG-PTC 系统的热力性能。

折合 DSG-PTC 系统发电功率:

$$P_{\text{solar}} = \frac{F_{\text{csave}} \cdot Q_{\text{cnet}} \cdot \eta_{\text{pave}}}{1000}$$
(2)

DSG-PTC 平均光电转换效率:

$$\eta_{\text{solpave}} = \frac{P_{\text{solar}}}{Q_{\text{DNsum}}} \cdot 100\%$$
(3)

式中: P_{sum} —机组累计发电量, MW • h; F_{csum} —累计 燃煤消耗量, t; F_{csave} —节省燃煤量, t; η_{pave} —燃煤发 电机组平均发电效率, 根据式(1)计算; Q_{DNIsum} — DSG-PTC 吸收太阳能直接辐射热量累计, MW; Q_{cout} —燃煤低位发热量 kJ/kg_{\circ}

依据表 3 的仿真试验数据,利用上述公式计算 相关热力指标数据,其结果如表 4 所示。

表 3 DSG-SAPG 系统和燃煤发电机组仿真模型主要参数累计结果

Tab. 3 Accumulative results of the main parameters of the DSG-SAPG and coal-fired unit simulation model

	燃煤机组发电量	燃煤消耗	DSGSAPG 发电	燃煤消耗	DSG-PTC 吸收太阳能	时间间隔	
	累计/(MW・h)	量累计/t	量累计/(MW・h)	量累计/t	辐射热量累计/MW		
方案1	3766.050	1812.470	3766.237	1744.432	584.922	12 小时 34 分	
方案2	3765.958	1812.904	3766.045	1732.559	745.579	12 小时 34 分	
方案3	3765.667	1817.718	3765.884	1785.256	298.838	12 小时 34 分	
方案4	3766.18	1814.011	3766.31	1740.568	720.85	12 小时 34 分	
方案5	3767.414	1815.010	3767.264	1755.623	559.939	12 小时 34 分	
方案6	3767.421	1815.430	3767.322	1752.059	660.888	12 小时 34 分	

表4 DSG-SAPG 系统热力经济指标

Tab. 4 Thermodynamic economic index of the DSG-SAPG system

	燃煤机组平 均发电效率/%	DSG- S APG 平 均发电效率/%	节省燃 煤量/t	DSG-PTC 折合发 电量 / (MW・h)	DSG-PTC 平均光 电转换效率/%	聚光集热器 总面积/m ²
方案1	40.99	42.59	68.038	141.373	24.17	66931
方案2	40.97	42.88	80.345	166.901	22.39	85363
方案3	40.98	41.62	27.462	57.048	19.09	40953
方案4	40.95	42.68	73.443	152.479	21.15	82483
方案 5	40.94	42.33	59.387	123.269	22.01	64051
方案6	40.94	42.39	62.418	129.531	19.59	76032

在燃煤机组设计工况范围内 6 种方案的 DSG-SAPG 系统平均发电效率均高于对应的参考机组, 且吸收太阳能热量的工质参数相同或相近时,集热 系统蒸汽流量越大,或者集热系统蒸汽流量相同时, 吸收太阳能的工质参数越高,则燃煤节省量越大, DSG-SAPG系统平均发电效率越高^[2 8],表中方案1 的 DSG-PTC 蒸汽参数最高 而方案 2 的蒸汽流量最 大 故其节煤量以及平均发电效率较高; DSG-SAPG 系统中的 DSG-PTC 平均光电转换效率普遍高于同 容量的 DSG-PTC-STTP 系统^[1]。方案1-方案3的 DSG-SAPG 系统中, DSG-PTC 的平均光电转换效率 高低顺序与文献[2]中计算结果和研究结论一致。 由于方案6的集热系统给水来自参考机组的凝结水 泵出口 而方案5 的集热系统给水来自参考机组给 水泵抽头,DSG-PTC系统承担了凝结水的额外加 热 因而方案 6 的 DSG-SAPG 系统节煤量以及平均 发电效率略高于方案 5;但由于太阳能加热低温凝 结水 其能量利用率较低 ,畑损较大^[9] 而用于高温 给水加热时,工质吸收烟量较高^[2],故方案6的集 热系统平均光电转换效率低于方案5 这与文献[2] 中的结论相符。方案 4 中的 DSG-PTC 系统平均光 电转换效率低于方案1的原因同上。方案5 与方案 1 相比 ,DSG-PTC 系统给水接入端参数以及蒸汽流 量相同 但方案1的蒸汽参数较高 故其集热系统平 均光电转换效率较高,这是因为方案1中工质吸收 的烟量较高所致。综上分析,从热力学角度而言, 本研究提出的6种较易实现的 DSG-SAPG 系统集成 方案中,方案1 是最佳集成方式,经济性能 最好^[2,7]。

6 结 论

根据相关文献设计了6种不同流程的 DSG-PTC 热力系统,通过编程进行了热力计算;结合典型 300 MW 亚临界燃煤发电机组,提出了6种 SAPG 系统 的集成方案;基于已取得的研究成果,首次研究 DSG-SAPG 系统实时动态仿真模型。

利用仿真模型模拟 DSG-SAPG 系统连续 12 h 运行过程,分析了 DSG-SAPG 系统的运行特性,揭示 了两个能源系统间工质流和能量流的匹配规律;从 系统和动力学角度验证了相关文献所列举的 SAPG 各种集成方案的可行性,研究表明当集热系统所提 供的蒸汽流量处于燃煤机组设计裕量范围内,无需 对燃煤机组的结构进行改造,即可保证 SAPG 系统 具有较高的经济性和运行稳定性。

利用典型扰动研究了 DCS-SAPG 系统的动态响 应特性,试验表明在燃煤机组控制系统自动调节和 热力系统自平衡作用下,所研究的 DSG-SAPG 系统 模型具有良好的动态响应特性,主要热力参数变化 符合机组运行机理和热工调节过程。

利用模型提供的试验数据,计算分析了6种集 成方式的 DSG-SAPG 系统热经济性,从热力学的角 度给出了 SAPG 系统的最佳集成方案,与相关文献 理论分析结果一致。

参考文献:

- Eric Hu , Yang Y , Nishimura A. , et al. Solar thermal aided power generation [J]. Applied Energy 2010 87(9): 2881 – 2885.
- [2] 杨勇平 凗映红 侯宏娟 等. 太阳能辅助燃煤一体化热发电系 统与经济性分析[J]. 中国科学 2009 39(4):673-679.
 YANG Yong-ping ,CUI Ying-hong ,HOU Hong-juan ,et al. Solar energy-aided coal-fired integrated power generation system and its cost-effectiveness analysis [J]. China Science 2009 39(4): 673 679.
- [3] Eduardo Zarza ,M. Esther Rojas ,LourdesGonzález ,et al. INDITEP the first pre-commercial DSG solar power plant [J]. Solar Energy , 2006 80(10):1270 – 1276.
- [4] Jüergen H. Peterseim Stuart White , Amir Tadros , et al. Concentrated solar power hybrid plants , which technologies are best suited for hybridisation [J]. Renewable Energy 2013 57(9): 520 – 532.
- [5] G. C. Bakos ,Ch. Tsechelidou. Solar aided power generation of a 300 MW lignite fired power plant combined with line-focus parabolic trough collectors field [J]. Renewable Energy ,2013 ,60 (12):540-547.
- [6] Warrick Pierce ,Paul Gauché ,Theodor von Backström ,et al. A comparison of solar aided power generation (SAPG) and stand-a-lone concentrating solar power (CSP) : A South African case study [J]. Applied Thermal Engineering 2013 β1(2):657-662.
- [7] 崔映红 杨勇平 杨志平 等. 太阳能辅助燃煤一体化热发电系统耦合机理[J]. 中国电机工程学报 2008 28(29):99-104.
 CUI Ying-hong ,YANG Yong-ping ,YANG Zhi-ping ,et al. Coupling mechanism of a solar energy-aided coal-fired integrated power generation system[J]. Proceedings of China Electric Machinery Engineering 2008 28(29): 99-104.
- [8] 侯宏娟,毛 剑 杨勇平,等.太阳能辅助燃煤机组发电系统集 热温度优化[J].中国电机工程学报 2012 32(20):76-81.
 OU Hong-juan MAO Jian, YANG Yong-ping et al. Optimization of the heat accumulation temperature of a solar energy-aided coalfired power generation system [J]. Proceedings of China Electric Machinery Engineering 2012 32(20): 76-81.
- [9] Rongrong Zhai , Pan Peng , Yongping Yang , et al. Optimization study of integration strategies in solar aided coal-fired power generation

system[J]. Renewable Energy 2014 68(8):80-86.

- [10] M. J. Montes ,A. Rovira ,M. Muñoz ,et al. Performance analysis of an integrated solar combined cycle using direct steam generation in parabolic trough collectors [J]. Applied Energy 2011 &8(9): 3228 - 3238.
- [11] Birnbaum J ,Eck M ,Fichtner M ,et al. A direct steam generation solar thermal power plant with integrated thermal storage [R]. In: Proc of 14th int solarPACES symp on sol therm conc technol ,Las Vegas ,USA 2008.
- [12] 崔 凝 徐国强,马士英. DSG 型抛物面槽式太阳能热电站热 力系统实时动态仿真模型研究[J].中国电机工程学报, 2014,34(11):1787-1798.

CUI Ning XU Guo-qiang MA Shi-ying. Study on a real-time dynamic simulation model for DSG type parabolic trough solar energy thermal power station thermodynamic systems [J]. Proceedings of China Electric Machinery Engineering 2014 34(11): 1787 – 1798.

[13] 杨 宾. 槽式太阳能直接蒸汽热发电系统性能分析与实验研究 [博士学位论文]. 天津: 天津大学 2011.

YANG Bin. Performance analysis and experimental research of a trough type solar energy direct steam thermal power generation system [D]. Tianjin: Tianjin University 2011.

[14] 陈海平,刘吉臻,张春发,等.火电机组辅助汽水系统定量分析的通用模型[J].中国电机工程学报,2005,25(12):98-102.

CHEN Hai-ping ,LIU Ji-zhen ,ZHANG Chun-fa ,et al. A generalpurpose model for quantitatively analyzing auxiliary steam-water systems of thermal power units [J]. Proceedings of China Electric Machinery Engineering 2005 25(12): 98 – 102.

[15] 张春发,李 娟.基于高加解列的小扰动理论局限性的定量研究[J].汽轮机技术 2008 50(1):34-36.
ZHANG Chun-fa ,LI Juan. Quantitative study of the limitation of the small disturbance theory based on the disengagement of high-pressure heaters [J]. Steam Turbine Technology ,2008 ,50(1): 34-36.

(丛 敏 编辑)

,,d·H·H·H·H·H·H·H,

低级燃料和生物质在脉动层内的燃烧

DOI:10.16146/j.cnki.rndlgc.2015.01.035

据《Энергетика》2013 年 11 – 12 月刊报道,白俄罗斯国立技术大学的专家研究并分析了低级燃料和生物质在脉动层内的燃烧过程。

现在,各种燃料包括生物质的燃烧广泛地利用假液化层,与不动层或火焰燃烧炉膛内相比,假液化层的所有燃烧过程将更加强烈。

提供了低级燃料和固体植物性生物质在脉动层内的燃烧模型。

指出了燃料在脉动层内燃烧的优点,包括燃料燃烧效率的提高。

提出了低级燃料和固体植物性生物质在脉动层内燃烧的炉膛结构。

(吉桂明 摘译)

large amount. The NO_{χ} emissions from the boiler will drop conspicuously declining 68.8% 52.9% and 56.6% at a load of 100% 75% and 50% respectively. The temperature of the flue gases at the bottom of the tube platen will obviously increase and the main and reheat steam characteristics will improve considerably thus the temperature will increase to the design value and the heat load of the wall surface of the water wall will be more uniform. Although the carbon content of flying ash and CO emissions concentration will increase the temperature of the exhaust flue gases will decline by about 10 °C and the decrease in the heat loss of the exhaust flue gases will be greater than the sum of the mechanical and chemically incomplete combustion loss thus increased therefore the boiler efficiency will increase. **Key Words**: pulverized coal low NO_{χ} combustion in-depth air staging numerical simulation

300 MW CFB 锅炉协同脱汞工艺研究及试验 = Study and Experiment of the Synergy Mercury Removal Technology for a 300 MW CFB Boiler [刊 ,汉]BAI Jian-yun ,WANG Li (Shanxi University ,Taiyuan ,China ,Post Code: 030013) ,ZHANG Pei-hua (Shanxi Pingshuo Gangue Power Generation Co. Ltd. ,Shuozhou ,China ,Post Code: 036800) //Journal of Engineering for Thermal Energy & Power. -2015 30(1). -124 - 128

A test and analysis were performed of the mercury content of coal burned and combustion products of a 300 MW circulating fluidized bed boiler under various operating conditions. The results show that the mercury content and carbon content of flying ash and specific surface area assume a positive correlation and the mercury content of combustion products increases with an increase of the load of the boiler. In this process the leading edges in eliminating mercury from a CFB boiler were analyzed. To further reduce the mercury content of the flue gases and attain an ultra low emissions of mercury on the basis of making full use of the currently available device a synergy mercury removal process was designed to add the oxidization agent in the front of the boiler to make more HgO to be converted to Hg²⁺ and to additionally install a humidification and activation device after the air preheater in the tail portion of the flue gas duct to make more in the flying ash to be converted to Hg(p) thus captured by the bag type dust precipitator. The feasibility of the process in question was also analyzed. **Key Words**: CFB boiler and the mercury content of combustion products mercury emission characteristics synergy mercury removal technology altra low emissions

基于动态仿真模型的 SAPG 系统热力特性研究 = Study of the Thermodynamic Characteristics of a SAPG (Solar Thermal Aided Power Generation) System Based on a Dynamic Simulation Model [刊,汉] CUI Ning ,MA Shi-ying (North China University of Electric Power ,Baoding ,China ,Post Code: 071003) ,WU Ming-mi-an (Baoding Huafang Science and Technology Stock Co. Ltd. ,Baoding ,China ,Post Code: 071051) //Journal of Engineering for Thermal Energy & Power. - 2015 ,30(1). - 129 - 137

Proposed were six integration versions for a solar energy thermal-aided coal-fired unit integration power generation system with a direct steam production trough type concentrated heat collection system (direct stream generation in parabolic trough collector ,DSG-PTC) serving as the auxiliary heat source. By making use of a dynamic simulation model the authors studied the operation characteristics of the SAPG system from the viewpoint of a system ,which reflected the law governing the matching of the thermal parameters between the two kinds of energy system and verified the feasibility of various integration versions for SAPG systems listed in literatures [No. 2 7 -9]. Through the process of the sun going in and out from the cloud stratum the dynamic response characteristics of the SAPG system were simulated and analyzed. From the angle of the thermodynamics, the thermal cost-effectiveness of the SAPG system was calculated and analyzed in various integration modes and the optimum integration version was given out. **Key Words**: direct steam production , parabolic surface trough type sunlight concentration and heat accumulation , solar energy heat-aided coal-fired unit power generation , dynamic model simulation

液压型风力发电机组最佳功率追踪控制研究 = Study of the Optimum Power Tracking and Control of a Hydraulic Type Wind Power Generation Unit [刊,汉]AI Chao (Hebei Provincial Laboratory on Heavy-duty Machine Fluid Power Transmission and Control, Yanshan University, Qinhuangdao, China, Post Code: 066004), KONG Xiang-dong (Education Ministry Key Laboratory on Advanced Forging Shape-forming Technology and Science, Yanshan University, Qinhuangdao, China, Post Code: 066004), YAN Gui-shan, LIAO Li-hui (College of Mechanical Engineering, Yanshan University, Qinhuangdao, China, Post Code: 066004) //Journal of Engineering for Thermal Energy & Power. - 2015 30(1). - 138 - 144

In the light of the problem relating to the energy conversion efficiency of a hydraulic type wind power generator unit ,with the optimum output power of the unit serving as the control target ,proposed were two methods for tracking the optimum power. With a 30 kVA hydraulic type wind power generator unit test platform serving as a basis ,the authors studied the feasibility and control features of the control methods thus proposed. The simulation and test results show that the optimum power tracking and control method directly controlled by pressure is simple and easy , however ,its accuracy is susceptible to the efficiency of the system. When the efficiency of the system is taken into account ,the optimum power tracking and control method jointly controlled by the system pressure and the rotating speed of the wind turbine enjoys a more precise tracking result. **Key Words**: wind power generation ,hydraulic transmission ,optimum power tracking ,pressure control ,wind turbine rotating speed

1 000 MW 火电机组凝结水泵变频改造分析 = Analysis of the Variable Frequency Modification to the Condensate Water Pump of a 1 000 MW Unit in a Thermal Power Plant [刊,汉]LI Yan-chao, YU Hai-dong