文章编号:1001-2060(2015)06-0926-06

基于 PID 型神经网络的除氧器压力和水位 解耦控制研究

王 鹏¹ 张 伟² 戴日辉³ 孟 浩¹

 (1.哈尔滨工程大学 自动化学院 黑龙江 哈尔滨 150001; 2.中国船舶重工集团公司第七 0 三研究所, 黑龙江 哈尔滨 150078; 3.海军驻七 0 三研究所军事代表室 黑龙江 哈尔滨 150078)

摘 要:船舶蒸汽动力装置中除氧器压力和除氧器水位互相 关联,具有很强的耦合性,传统的 PID 控制很难获得令人满 意的控制效果,因此必须采取相应的解耦措施。PID 型神经 网络不仅具有传统 PID 的优点,还具有神经网络的自学习和 逼近任意函数的能力。本研究建立了除氧器压力和水位的 模型,并通过建立与比例、积分和微分相对应的神经元,将 PID 和神经网络整合在一起,提出一种 PID 型神经网络解耦 控制方法。在所建立的除氧器压力和水位模型上对 PID 型 神经网络解耦控制方法进行仿真。仿真结果表明,相对于单 回路 PID 控制方法,该方法具有比单回路 PID 控制更好的解 耦效果,可以将除氧器压力和水位的稳定时间分别缩短 100 s 和 60 s,并将二者的超调量分别减少 0.6 KPa 和 0.005 m。

关 键 词: 蒸汽动力; 除氧器压力; 除氧器水位; PID 型神 经网络; 多变量解耦控制

中图分类号: TP273; TK223.5 文献标识码: A DOI:10.16146/j.cnki.rndlgc.2015.06.026

引 言

除氧器是船舶蒸汽动力装置给水系统中的主要 设备之一,主要用来除去系统凝结水中的氧气等非 凝结气体,并将凝结水加热至除氧器下的饱和温度 供锅炉使用。在船舶蒸汽动力装置中,除氧器的加 热蒸汽主要来自废汽总管。除氧器的简化工作原理 如图1所示。目前常用的除氧器压力和水位控制方 法是设置独立的两个单回路的 PID 控制器:除氧器 压力调节阀通过控制进入除氧器的废汽流量来维持 除氧器压力稳定,凝水调节阀通过控制进入除氧器 的凝结水流量来维持除氧器水位稳定。除氧器压力 和水位之间具有很强的耦合特性,因此依靠传统的 单回路控制难以达到理想的控制效果,需要进行解 耦控制。

PID 控制具有算法简单、成熟、稳定性好等特点 在工程实际中得到了广泛的应用。神经网络因

收稿日期: 2014-07-22; 修订日期: 2014-08-20

作者简介:王 鹏(1979-),男 黑龙江哈尔滨人,中国船舶重工集团公司第七〇三研究所博士研究生.

其鲁棒性好,本身具有学习能力、泛化能力和非线性 映射能力近年来受到了广泛的关注^[1]。因此,将 PID 与神经网络结合起来,提出一种兼具二者特点 的基于神经网络解耦的协调控制方法,再根据系统 运行原理建立除氧器压力-水位的模型进行仿真验 证。仿真结果表明该方法内含的解耦机制能获得令 人满意的除氧器压力和水位控制效果。

图 1 除氧器压力和水位系统原理图

1 除氧器压力 – 水位建模

为建立除氧器的模型,假设如下:(1)忽略除氧 器向外界的散热;(2)除氧器中压力和温度同步变 化;(3)水箱中水的比容假定只是压力或水温的函 数;(4)除氧器内金属按20%的比例参与热反应; (5)除氧器内水的密度按饱和水密度计算^[2-4]。

蒸汽质量平衡:

 $\frac{d \left[\left(V_{d} - V_{dw} \right) \rho_{s} \right]}{d\tau} = D_{si1} + D_{v} - D_{n} - D_{so} \quad (1)$ 式中: V_{d} 一除氧器总容积 ,m³; V_{dw} 一除氧器内水的 体积 ,m³; ρ_s 一除氧器内饱和蒸汽的密度 ,kg/m³; D_{si1} 一蒸汽侧加热蒸汽流量 ,kg/s; D_v 一除氧器水 箱水的动态产汽量 ,kg/s; D_{so} 一除氧器排汽量 ,kg/ s; D_n 一蒸汽侧凝结汽量 ,kg/s。

凝结水质量平衡:

$$\frac{\mathrm{d}(V_{\mathrm{dw}}\rho_{\mathrm{w}})}{\mathrm{d}\tau} = V_{\mathrm{dw}}\frac{\mathrm{d}\rho_{\mathrm{w}}}{\mathrm{d}\tau} + \rho_{\mathrm{w}}\frac{\mathrm{d}V_{\mathrm{dw}}}{\mathrm{d}\tau} = D_{\mathrm{wi}} + D_{\mathrm{si2}} + D_{\mathrm{r}}$$

 $-D_{\rm v} - D_{\rm wo} \tag{2}$

式中: ρ_w 一水箱内水的密度 ,kg/m³; D_{si2} 一除氧器 水侧加热蒸汽量 ,kg/s; D_{wi} 一进入除氧器的凝结水 流量 ,kg/s; D_{wo} 一给水输出量 ,kg/s。

除氧器能量平衡:

$$\frac{\mathrm{d}\left[\left(V_{\mathrm{d}}-V_{\mathrm{dw}}\right)\rho_{\mathrm{s}}H_{\mathrm{s}}+V_{\mathrm{dw}}\rho_{\mathrm{w}}H_{\mathrm{w}}+0.2c_{\mathrm{d}}M_{\mathrm{d}}t_{\mathrm{s}}-AV_{\mathrm{d}}P_{\mathrm{d}}\right]}{\mathrm{d}\tau}$$

= $D_{si}H_{si} + D_{wi}H_{wi} - D_{so}H_{s} - D_{wo}H_{w}$ (3) 式中: P_{d} 一除氧器内蒸汽压力, MPa; H_{s} 一饱和蒸 汽焓值, kJ/kg; H_{w} 一除氧器内水的焓值, kJ/kg; H_{si} 一加热蒸汽平均焓值, kJ/kg; H_{wi} 一凝结水的焓 值, kJ/kg; c_{d} 一除氧器金属的比热容, kJ/kg • s; M_{d} 一除氧器金属的质量, kg; t_{s} 一饱和蒸汽温 度, °C; A 一单位换算系数; $D_{si} = D_{si1} + D_{si2}$ 一除氧 器总加热汽量 kg/s。

凝结蒸汽量:

$$D_{\rm n}(H_{\rm s} - H_{\rm w}) = D_{\rm wi}(H_{\rm wi} - H_{\rm w}) - D_{\rm sil}(H_{\rm si} - H_{\rm s})$$
(4)

工质饱和参数状态方程:

$$\begin{cases} \frac{dH_{s}}{d\tau} = \frac{dH_{s}}{d\rho_{s}} \cdot \frac{d\rho_{s}}{d\tau} = f_{x1} \frac{d\rho_{s}}{d\tau} \\ \frac{dH_{w}}{d\tau} = \frac{dH_{w}}{d\rho_{s}} \cdot \frac{d\rho_{s}}{d\tau} = f_{x2} \frac{d\rho_{s}}{d\tau} \\ \frac{d\rho_{w}}{d\tau} = \frac{d\rho_{w}}{d\rho_{s}} \cdot \frac{d\rho_{s}}{d\tau} = f_{x3} \frac{d\rho_{s}}{d\tau} \\ \frac{dt_{s}}{d\tau} = \frac{dt_{s}}{d\rho_{s}} \cdot \frac{d\rho_{s}}{d\tau} = f_{x4} \frac{d\rho_{s}}{d\tau} \\ \frac{dP_{d}}{d\tau} = \frac{dP_{d}}{d\rho_{s}} \cdot \frac{d\rho_{s}}{d\tau} = f_{x5} \frac{d\rho_{s}}{d\tau} \end{cases}$$
(5)

 $t_s imes
ho_w imes H_s imes H_w imes P_d$ 的变化率均变为饱和汽密 度变化率的函数。 $f_{x1} imes f_{x5}$ 可依据国际通用水和蒸 汽热力状态参数工业化计算公式 IFC67 用曲线拟和 公式近似计算。

将式(5) 代入式(3) 进行変換并令:

$$F_{x0} = \frac{(V_{d} - V_{dw})\rho_{s}f_{x1} + (V_{d} - V_{dw})\rho_{s}f_{x2} + 0.2c_{d}M_{d}f_{x4} - AV_{d}f_{x5}}{H_{s} - H_{w}}$$

可得:

$$D_{v} = \frac{D_{si2}(H_{si} - H_{w})}{H_{s} - H_{w}} - F_{x0} \frac{d\rho_{s}}{d\tau}$$
(6)

根据式(2)可得:

$$\frac{\mathrm{d}V_{\mathrm{dw}}}{\mathrm{d}\tau} = \frac{1}{\rho_{\mathrm{w}}} \left[D_{\mathrm{w}i} + D_{\mathrm{s}i2} + D_{\mathrm{n}} - D_{\mathrm{wo}} - \frac{D_{\mathrm{s}i2}(H_{\mathrm{s}i} - H_{\mathrm{w}})}{H_{\mathrm{s}} - H_{\mathrm{w}}} + \right]$$

$$F_{x0} \frac{\mathrm{d}\rho_{s}}{\mathrm{d}\tau} - V_{w} f_{x3} \frac{\mathrm{d}\rho_{s}}{\mathrm{d}\tau}]$$

$$\mathbf{RET}(1) \mathbf{\overline{T}};$$
(7)

$$\frac{\mathrm{d}\rho_{\mathrm{s}}}{\mathrm{d}\tau} = \frac{\left[D_{\mathrm{si1}} - D_{\mathrm{n}} - D_{\mathrm{so}} + \frac{\rho_{\mathrm{w}} - \rho_{\mathrm{s}}}{\rho_{\mathrm{w}}} \cdot \frac{D_{\mathrm{si2}}(H_{\mathrm{si}} - H_{\mathrm{w}})}{H_{\mathrm{s}} - H_{\mathrm{w}}} + \frac{\rho_{\mathrm{s}}}{\rho_{\mathrm{w}}}(D_{\mathrm{wi}} + D_{\mathrm{si2}} + D_{\mathrm{n}} - D_{\mathrm{w}})\right]}{V_{\mathrm{d}} - V_{\mathrm{dw}} + F_{\mathrm{s0}} + \frac{\rho_{\mathrm{s}}}{\rho_{\mathrm{w}}}(V_{\mathrm{dw}}f_{\mathrm{s3}} - F_{\mathrm{s0}})}$$
(8)

除氧器压力 P_{d} 可由饱和蒸汽密度 ρ_{s} 利用水蒸 气热力性质函数求得。除氧器水位 L_{d} 则与体积 V_{dw} 相对应。由以上推导可得 P_{d} 和 L_{d} 的封闭微分方 程组。

2 基于 PID 型神经网络的解耦控制

依据上面建立的模型可求解出除氧器压力和水 位,当忽略除氧器排汽影响时,被控对象相当于一个 双输入双输出的多变量系统。输入是给除氧器压力 调节阀开度和凝结水调节阀开度,输出是除氧器压 力和水位。多个 PID 型神经网络交叉关联可用于多 变量系统的解耦控制,这种网络控制器通过在线自 学习和网络权值调整,使系统的每个被控变量只与 其对应的给定输入量有关,而与其他的给定输入量 无关,并且使各个被控变量都具有良好的动态和静 态性能,从而实现系统广义解耦控制^[5]。因此,基 于 PID 型神经网络解耦的除氧器压力和水位协调控 制方法可以避免当单独采用 PID 算法时,出现的对 强耦合对象控制效果不佳的问题。其原理如图 2 所示。

2.1 解耦控制系统设计

如图 2 所示,被控对象除氧器压力 – 水位模型 为一个双输入双输出的对象,输入量是凝结水调节 阀控制量 u₁ 和除氧器压力调节阀控制量 u₂,输出 量是除氧器压力 P_d 和水位 L_d。除氧器压力和水位 的给定值分别为 P_0 和 L_0 。 PID 型神经网络解耦控 制系统采用 2 个前向神经网络 PID – NN1 和 PID – NN2。每个神经网络的输入层包含 2 个神经元,隐 含层包含 3 个神经元,输出层包含 1 个神经元。将 PID 控制规律融入神经网络的结构中,每个子网的 等价控制规律为^[6]:

$$u_{s} = K_{Ps}e_{s}(k) + K_{Is}\sum_{i=0}^{n}e_{s}(i) + K_{Ds}\left[e_{s}(k) - e_{s}(k) - 1\right]$$
(9)

式中: s = 1 2一神经网络的序号; *k* 一采样点个数; $e_s(k)$ 一被控对象和设定值的偏差。 $K_{Ps} \ K_{Is} \ K_{Ds}$ 一PID 控制器的比例、积分和微分系数,分别对应神经网络中的 3 个隐含层节点。在 PID – NN1 中,以除氧器水位 L_d 与水位设定值 L_0 作为 PID – NN1 的输入,两者之间的偏差即等价于 PID 控制器 中的偏差 $e_1(k)$,即 $e_1(k) = L_0 - L_d$ 按照式(10) 计 算出 PID – NN1 的输出即凝结水调节阀的控制量 u_1 。在 PID – NN2 中,以除氧器压力 P_d 与压力设定 值 P_0 作为 PID – NN2 的输入, $e_2(k) = P_d - P_0$, PID – NN2 的输出即除氧器压力调节阀的控制量 u_2 。 u_1 通过前向计算包含了 PID – NN2 网络的神经元的解耦 控制; u_2 包含了 PID – NN1 网络的神经元的解耦

图 2 基于 PID 神经网络的除氧器压力和水位 解耦控制系统

Fig. 2 The deaerator pressure and water level decoupling control system based on PID neural network

 2.2 神经网络结构 神经网络结构分为3 层:

(1) 输入层: 输入层神经元的输入为 $net_{11}^{1}(k)$ = L_{d} , $net_{12}^{1}(k) = L_{0}$, $net_{21}^{1}(k) = P_{d}$, $net_{22}^{1}(k) = P_{0}$ 。在输入层中, 神经元的输入与输出是相等的, 即神经元的输出为 $O_{si}^{1}(k) = net_{si}^{1}(k)$ 。式中 *i* 为网 络中输入层的序号。*i* = 1 2 。

(2) 隐含层: 隐含层神经元的输入为:

$$net_{sj}^{2}(k) = \sum_{i=1}^{2} w_{sij}^{1} O_{si}^{1}(k)$$
 (10)

式中: w_{sij}^{1} 一输入层至隐含层的权值; *j* 一网络中隐 含层的序号 , *j* = 1 2 3 。隐含层各神经元的激励函 数各不相同 ,其输出如下:

比例神经元: $O_{s1}^2(k) = net_{s1}^2(k)$ 积分神经元: $O_{s2}^2(k) = O_{s2}^2(k-1) + net_{s2}^2(k)$

微分神经元: $O_{s3}^2(k) = net_{s3}^2(k) - net_{s3}^2(k-1)$

(3) 输出层: 输出层的输入是各子网络隐含层

节点输出值的加权和,输出层的输出即控制器的输出,可表示为:

$$u_{s}(k) = O_{sh}^{3}(k) = net_{sh}^{3}(k) = \sum_{s=1}^{2} \sum_{j=1}^{3} w_{sjh}^{2} O_{sj}^{2}(k)$$
(11)

式中: $w_{s,h}^2$ 一隐含层至输出层的权值。h 一网络中输 出层的序号 ,h = 1。

2.3 权值计算

将 PID 神经网络与多变量被控对象一起作为广 义网络,采用 BP 学习算法进行训练。BP 学习算法 是广泛应用于神经网络的一种学习算法,其具有良 好的学习能力和结构简单,实现容易的特点^[7]。BP 算法的准则函数为:

$$J = \sum_{s=1}^{2} E_{s} = \frac{1}{2l} \sum_{s=1}^{2} \sum_{k=1}^{l} [net_{sl}^{1}(k) - net_{s2}^{1}(k)]^{2}$$
(12)

式中: *l* 一每批采样点数。采用梯度法训练控制器 的权值 隐层至输出层权值为:

$$w_{\rm sjh}^2(k+1) = w_{\rm sjh}^2(k) - \eta_{\rm sjh} \frac{\partial J}{\partial w_{\rm sjh}^2}$$
(13)

式中: $\eta_{
m sjh}$ 一学习步长。

$$\frac{\partial J}{w_{\rm sjh}^2} = \sum_{s=1}^2 \frac{\partial E_s}{\partial net_{s1}^1} \frac{\partial net_{s1}^1}{\partial u_s} \frac{\partial u_s}{\partial net_{sh}^3} \frac{\partial net_{sh}^3}{\partial w_{\rm sjh}^2}$$
(14)

由于对象特性未知 ,可表示为:

$$\frac{\partial net_{s1}^{1}}{\partial u_{s}} = \operatorname{sgn} \frac{net_{s1}^{1}(k) - net_{s1}^{1}(k-1)}{u_{s}(k-1) - u_{s}(k-2)}$$
(15)

$$\delta_{\rm sh}^2(k) = (net_{\rm s1}^1 - net_{\rm s2}^1) \operatorname{sgn} \frac{net_{\rm s1}^1(k) - net_{\rm s1}^1(k-1)}{u_{\rm s}(k-1) - u_{\rm s}(k-2)}$$
(16)

代入(15) 可得:

$$\frac{\partial J}{\partial w_{\rm sjh}^2} = -\frac{1}{l} \sum_{s=1}^{2} \sum_{k=1}^{l} \delta_{\rm sh}^2(k) O_{\rm sj}^2(k)$$
(17)

同理 输入层至隐含层权值为:

$$w_{
m sij}^1(\ k + 1) \ = w_{
m sij}^1(\ k) \ - \eta_{
m sij} rac{\partial J}{\partial w_{
m sij}^1} \ = \ w_{
m sij}^1(\ k) \ + \eta_{
m sij}$$

$$\frac{1}{l} \sum_{s=1}^{2} \sum_{h=1}^{1} \sum_{k=1}^{l} \delta_{shi}^{l}(k) O_{si}^{l}(k)$$
(18)

式中:

$$\delta_{\rm shi}^{\rm l}(k) = \delta_{\rm sh}^{\rm 2}(k) w_{\rm sjh}^{\rm 2} {\rm sgn} \frac{O_{\rm sj}^{\rm 2}(k) - O_{\rm sj}^{\rm 2}(k-1)}{net_{\rm sj}^{\rm 2}(k-1) - net_{\rm sj}^{\rm 2}(k-2)}$$

2.4 初始权值的选取

神经网络的初始权值选取对于神经网络的学习 速度和收敛速度至关重要。通常初始权值随机选 取 会消耗大量的训练时间 还会增加收敛陷入局部 极小点的概率。而 PID 由于其广泛应用,有很多成 熟的方法可以用来选取参数。PID 型神经网络的连 接权值的初值选取可参照 PID 控制器的特点来确 定^[8]。这种方法可使 PID 型神经网络在初始运行 时有与 PID 控制器相等的控制效果,在此基础上再 通过在线训练学习调整网络连接权值。根据式 (9) 确定输入层至隐含层权值的初值为: $w_{sli}^{1}(k)$ = +1, $w_{s2i}^{1}(k) = -1$ 。隐含层至输出层的连接权 值的初值应使 PID 型神经元网络的权值取初值时等 价于独立的 PID 控制器,有: $w_{111}^2(k) = K_{P1}$, $w_{121}^2(k) = K_{11}, w_{131}^2(k) = K_{D1}, w_{112}^2(k) = 0$ $w_{122}^2(k) = 0$, $w_{132}^2(k) = 0$, $w_{212}^2(k) = K_{P2}$, $w_{222}^2(k)$ $= K_{12}$, $w_{232}^2(k) = K_{12}$, $w_{211}^2(k) = 0$, $w_{221}^2(k) = 0$, $w_{231}^2(k) = 0$.

3 仿真及分析

3.1 仿真条件

在所建立的除氧器压力 - 水位模型上利用 PID 型神经网络解耦控制分别对升负荷和降负荷过程进 行仿真 模型主要参数为: $H_{si} = 252.2 \text{ kJ/kg}$, $H_{si} = 2 800 \text{ kJ/kg}$, $V_d = 18 \text{ m}^3$, $M_d = 8 000 \text{ kg}$, $c_d = 0.5 \text{ kJ/kg} \cdot \text{s}$, $D_{so} = 1 \text{ kg/s}$ 。PID 型神经网络的主要参 数为: $\eta_{sjh} = 0.005$, $K_{P1} = 0.5$, $K_{I1} = 0.7$, $K_{D1} = 0.8$, $K_{P2} = 0.35$, $K_{I2} = 0.4$, $K_{D2} = 0.9$ 。

- 3.2 仿真结果及分析
- 3.2.1 升负荷过程

如图 3 - 图 6 所示,根据蒸汽动力装置运行规 律,系统负荷上升时,锅炉给水流量 D_{wo}从 9.5 kg/s 上升至 46.5 kg/s。 D_{wo} 的增加导致除氧器水位 L_d 下降,水位偏差加大。此时在控制器的作用下,凝结水调节阀开大,凝结水流量增加, L_d 逐渐稳定;由于 L_d 下降,除氧器压力 P_d 也随之下降,压力偏差下降。此时除氧器压力调节阀开大,进入除氧器的加热蒸 汽量 D_{si} 增加,直到当除氧器的压力达到稳定值。

图 3 除氧器水位偏差

图 4 除氧器压力偏差 Fig. 4 The deaerator pressure deviation

3.2.2 降负荷过程

如图 7 至图 10 所示,系统负荷下降时,锅炉给 水流量 D_{wo} 从 46.5 kg/s 下降到 9.5kg/s。 D_{wo} 降低 时 除氧器内的水位 L_a 升高,水位偏差减小。在控 制器的作用下,凝结水调节阀关小,凝结水流量下 降, L_a 逐渐稳定;由于水位 L_a 的升高,除氧器压力 P_a 也升高,压力偏差加大。此时除氧器压力调节阀 关小,进入除氧器的加热蒸汽量 D_{si} 降低,直到除氧 器的压力达到稳定。

图 5 除氧器进汽流量

Fig. 5 The quantity of inlet heating steam flow

图6 凝结水流量

Fig. 6 The quantity of condensed water

Fig. 7 The deaerator water level deviation

图 8 除氧器压力偏差

Fig. 8 The deaerator pressure deviation

图 9 除氧器进汽流量

Fig. 9 The quantity of inlet heating steam flow

Fig. 10 The quantity of condensed water

比较单回路 PID 控制方法和 PID 型神经网络解

耦控制方法,从图 3 - 图 6 可以看到,采用单回路 PID 控制时,除氧器的压力偏差和水位偏差均有较 大超调,最大超调的绝对值分别为 0.8 KPa 和 0.033 m 稳定时间分别为 225 s 和 150 s。采用 PID 型神经网络解耦控制后,可以减小超调量 压力偏差 最大超调量绝对值为 0.2 KPa,水位偏差最大超调 量绝对值为 0.028 m。除氧器的压力偏差和水位偏 差的稳定时间分别为 125 s 和 90 s。此外进入除氧 器的加热蒸汽汽流量和凝结水流量的波动也较小。 从图 7 - 图 10 的降负荷过程也可以得到同样的结 论。由仿真结果可以看到,神经网络解耦控制与单 回路 PID 控制效果相比,除氧器压力和水位的超调 量均有所减少,达到稳定值所需时间也大为减少,系 统的稳定性增加,响应速度加快,特别是水位回路的 动态调节过程有了很大的改善。

4 结 论

针对船舶蒸汽动力装置中除氧器压力和水位之间存在的耦合问题。将 PID 与神经网络结合起来, 提出一种兼具二者特点的基于 PID 型神经网络解耦的协调控制算法并进行仿真,通过与 PID 控制进行 对比得到如下结论:

(1) 神经网络解耦控制方法具有优良的解耦性 能,能够在负荷变化情况下大幅度的缩短除氧器压 力和水位的稳定时间,并减少动态过程中的超调量, 从而获得更好的控制效果。相对于单回路 PID 方 法 除氧器压力的最大超调量的绝对值减小了 0.6 kPa,进入稳态的时间缩短了 100 s。除氧器水位的 最大超调量的绝对值减小了 0.005 m,进入稳态的 时间缩短了 60 s。

(2)在实际船舶蒸汽动力装置中,采用废汽作 为除氧器的加热蒸汽,因此除氧器的压力和废汽总 管压力系统联系紧密,除氧器水位则与冷凝器水位 之间也存在着耦合关系,本次研究未涉及,未来的研 究应全面考虑众多的影响因素。

参考文献:

 [1] 曹海云,李守巨,刘迎曦.基于 PID 神经网络的非线性动态系 统控制[J].控制工程 2007 S1:38-40.
 CAO Hai-yun ,LI Shou-ju ,LIU Ying-xi. Nonlinear dynamic system

control with PID neural networks [J]. Control Engineering of China S1 pp. 38-40 2007.

- [2] 王 挺,吴文辉 措 姆,等. 核电常规岛给水除氧器水位控制 系统建模与仿真[J]. 电网与清洁能源 2011 07:70-72.
 WANG Ting, WU Wen-hui, MU Cuo, XU Tang-huang. Modeling and simulation of tuning adjustment on the control system for the water level in the water feeder deaerator of the conventional island [J]. Power System and Clean Energy 2011 07:70-72.
- [3] 周 红. 核动力装置凝给水系统协调控制方法研究[D]. 哈尔 滨工程大学 2009.

ZHOU Hong. Research on coordinated control of condensation and feed water system for nuclear power plant [D]. Harbin Engineering University ,Harbin ,pp. 18 2009.

- [4] 吴 婕,许志斌,马晓茜.核电站除氧器水位控制模型的仿真研究[J].热力发电 2014 ρ3:47-51.
 WU Jie,XZU Zhi-bin,MA Xiao-xi. Numerical simulation on water level control model for deaerators in nuclear power plants [J]. Thermal Power Generation 2014 ρ3:47-51.
- [5] XU Dong ,WANG Bo ZHANG Lei. Velocity control for underwater vehicles based on PID neural network [C]. Proceedings of 2011 International Conference on Management Science and Intelligent Control (ICMSIC 2011) VOL. 01 [C]. Beijing ,China 2011: 4.
- [6] JIA Deli ,YOU Bo ZHANG Feng-jing. Decoupling control based on PID neural network for plasma cutting system [C]. Proceedings of 27th Chinese Control Conference [C]. Kunming , China , pp. 4 2008.
- [7] SUN Sheng-qi ,LI Shuang. Application of PID neural network in headbox multivariable decoupling control [C]. In 2nd International Conference on Consumer Electronics , Communications and Networks(CECNet) [C]. Yichang ,China 2012 ,pp. 2427 – 2430.
- [8] 舒怀林. PID 神经元网络控制系统分析 [J]. 自动化学报, 1999 25(1):105-111.
 Shu Huai-lin. Analysis of PID neural network multivariable control systems [J]. Acta Automatica Sinica. 1999 25(1),105-111.
 (姜雪梅 编辑)

a smaller uniformly distribution factor (within 2%) and better hydraulic performance. **Key words**: cooling tower, tube type water distribution hydraulic calculation genetic algorithm optimized design

基于 PID 型神经网络的除氧器压力和水位解耦控制研究 = Study of the Decoupled Control Over the Pressure and Water Level of a Deaerator Based on a PID (Proportional Integral and Differential) Type Neural Network [刊 汉] WANG Peng , MENG Hao (College of Automation , Harbin Engineering University , Harbin , China , Post Code: 150001) ZHANG Wei (CSIC No. 703 Research Institute , Harbin , China , Post Code: 150078) , DAI Ri-hui (Naval Representative Office Resident in Harbin No. 703 Research Institute , Harbin , China , Post Code: 150078) // Journal of Engineering for Thermal Energy & Power. - 2015 30(6). - 926 - 931

In marine steam power plants the pressure and water level in deaerators are correlated and have a strong coupling property. As a result to serve the property of the traditional PID control to achieve satisfactory control effectiveness and it is mandatory to take corresponding decoupling measures. PID type neural networks not only have the merits of the traditional PID control but also have an ability of performing a self-learning and approaching to any function. A model for the pressure and water level in deaerators was established and through establishing a neuron corresponding to the proportional integral and differential control the PID control and the neural network were integrated and a PID type neural network decoupling control method was proposed. By making use of the model thus established a simulation by using the PID type neural network decoupling control method in question boasts a better decoupling result the stabilization time durations of the pressure and water level in the deaerator can be shortened by 100 s and 60 s respective-ly and both overshoots can be reduced by 0.6 KPa and 0.005 m respectively. **Key words**: steam power pressure in a deaerator PID type neural network multi-variable decoupled control

某核电机组凝结水溶解氧超标问题分析及试验研究 = Analysis and Experimental Study of the Problem That the Dissolved Oxygen Content of Condensate Water in a Nuclear Power Unit Exceeds the Standard [刊 汉]YANG Zhang ,WANG Yu ,JIANG Yan-Jong (College of Astronautics ,Nanjing University of Aeronautics and Astronautics ,Nanjing ,China ,Post Code: 210016) ,YANG Zhang (Fujian Ningde Nuclear Power Co. Ltd. , Ningde ,China ,Post Code: 355200) ,SHI Jian-zhong (China Guangdong Nuclear Power Engineering Design Co.