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= Study and Applications of the Melted Salt Technologies in
Concentrating Solar Power Generation Systems XU Hai-wei ( Clean Energy Technology Research Insti—
tute Co. Ltd. China Huaneng Group Beijing China Post Code: 102209) CHANG Chun YU Qiang( Chinese A—
cademy of Sciences Key Laboratory on Solar Energy Heat Utilization and Photovoltaic Systems Electrical Engineer—
ing Research Institute Chinese Academy of Sciences Beijing China Post Code: 100190) //Journal of Engineering

for Thermal Energy & Power. —2015 30(5) . —659 —665

Melted salts and their heat transfer and accumulation technologies are regarded as an important means to further en—
hance the solar energy heat power generation efficiency. A contrast was made of the advances in the study of the
composition characteristics and latest low melting points of several main salts such as carbonate salt and nitrate salts
etc. The emphasis was put on an exploratory study of the advances and applications of the melted salt heat transfer
and accumulation technologies in both domestics and abroad and a melted salt heat transfer calculation correlation
formula was given. It is believed that to use the melted salt technologies can enhance the operating parameter of the
system to over 540 °C and heighten the power generation efficiency and heat accumulation efficiency by a large mar—
gin with the cost of power generation being reduced by 2% when compared with that of any power plant using heat
conduction oil as the working medium. Therefore the tower type solar energy heat power generation systems adop—
ting the melted salt technologies will have a wide application prospect. The focus for the future studies will be to
continue developing and improving the low melting point melted salt formula studying the melted salt intensified
heat exchange and accumulation and enhancing the reliability of heat accumulation systems. Key words: melted

salt solar energy heat power generation low melting point heat transfer heat accumulation

Cu- = Numerical Simulation of the Flow and Heat
Transfer Characteristics of a Cu-water Nano-fluid Inside a Plate Type Heat Exchanger SUN Bin
ZUO Ruidiang ZHANG Guan-nan ( College of Energy Source and Power Engineering Northeast University of Elec—
tric Power Jilin China Post Code: 132012) //Journal of Engineering for Thermal Energy & Power. — 2015 30

(5). -666 —671

As a cold fluid the Cu-water nano-luid was applied in a plate type heat exchanger system and a large-scale univer—
sal CFD ( computational fluid dynamics) software was used to perform a three dimensional numerical simulation of a

Cu-water nano-{luid plate type heat exchange system at various concentrations and obtain the distribution in a space
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of the temperature field heat exchange coefficient and flow field of the working medium for heat transfer. On this
basis the flow and heat transfer characteristics of the Cu-water nano-fluid inside a plate type heat exchanger were
analyzed and the simulation results were compared with the test ones. It has been found that the heat exchange ef—
fectiveness of the plate type heat exchanger with Cu-water nanofluid serving as the cold fluid is obviously superior
to that with pure water serving as the cold fluid however at the same time of increasing the flow speed and concen—
tration of the nanofluid full attention should be paid to the influence of the increase of the pressure drop arisen
from an increase of the viscosity on the performance of the heat exchanger. Key words: nano-{luid numerical sim-

ulation heat transfer flow

R290 = Experimental Study of the Boiling Heat Exchange of R290 Inside a Mi-
cro-channel GE Qidin LIU Jian-hua ZHANG Liang ZHANG Hui-¢hen ( College of Energy Source and
Power Engineering Shanghai University of Science and Technology Shanghai China Post Code: 200093) //Journal

of Engineering for Thermal Energy & Power. —2015 30(5) . —-672 =677

Experimentally studied were the boiling heat exchange characteristics of R290 in a horizontal stainless steel micro

channel with an inner diameter of 2 mm. The mass flow rate was 200 to 600 kg/m’s the heat flux density ranged

from 20 to 40 kW/m’ the dryness fell in a range from 0. 1 to 0.8 and the saturated temperature was 14 and 24 C.
It has been found that with a rise in heat flux density or dryness the boiling heat exchange coefficient will increase
notably and with an increase of the mass flow rate the heat exchange coefficient will also increase by a small margin
and to increase the saturated temperature will also result in a rise by a small margin of the heat exchange coeffi-
cient. The influence of the dryness and heat flux density on the heat exchange coefficient will be most remarkable.

Key words: micro channel R290 boiling heat exchange heat exchange coefficient

= Experimental Study of the Measurement of Particle Diameters and
Concentration of Steam Droplets YUAN Andi SU Mingxu LI Yong-ming CAI Xiao-shu ( Shanghai City
Key Laboratory on the Multi-phase Flow and Heat Transfer in Power Engineering Particle and Two-phase Flow
Measurement Research Institute Shanghai University of Science and Technology Shanghai China Post Code:

200093) //Journal of Engineering for Thermal Energy & Power. —2015 30(5) . —678 —683



