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When R22 is used as the working medium for the cycles the heat exchange corresponding to the unit net output
power will be minimum. Key words: trans-eritical organic Rankine cycle steam compression refrigeration cycle

flue gas waste heat composite system

= Numerical Simulation of the Melting Problem of the Bound-
ary Heat Source Changing with Time QU Liang-hui XING Lin YU Zhi-yun ( College of Sciences
Zhongyuan University of Technology Zhengzhou China Post Code: 450007) LING Feng ( College of Mathematics
and Statistics Zhaoqing University Zhaoqing China Post Code: 526061) //Journal of Engineering for Thermal En—

ergy & Power. —2015 30(5). - 689 —695

According to the idea of the method to fix the time interval and step and through considering the time required when
the moving interface presses forwards each time by a fixed distance a constant space and step method was estab—
lished to solve the one-dimensional single-phase melting problems of boundary heat sources changing with time. The
movement of the moving interface and the temperature field inside the working medium during the phase change
process under the condition of three boundary heat sources were numerically simulated and the features of the phase
change under various boundary heat sources were analyzed. A comparison and analysis of the numerical simulation
results show that it is feasible to seek solutions to the one-dimensional melting problem of boundary heat sources
changing with time by using both fixed space and step method and fixed time and step method and both methods
have a relatively high precision. Key words: melting phase change moving interface temperature numerical sim—

ulation

= Field Synergy Analysis of the Influence of the Side
Wall Vibration on the Internal Cooling of Blades in a Gas Turbine SHEN Jia-huan SONG Ping
WANG Hong-guang ( College of Energy Source and Power Engineering Shanghai University of Science and Tech—
nology Shanghai China Post Code: 200093) //Journal of Engineering for Thermal Energy & Power. —2015 30

(5). —696 701

By using the dynamic grid technology adopted in the software Fluent numerically simulated was the convection—

based heat exchange process in a two-dimensional rectangular channel between the cooling air and the wall surfaces
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under the condition of vibration and analyzed was the influence of such vibration parameters as various amplitudes

frequencies and vibration intensities on the heat transfer performance. Within the calculation range the vibration of
the wall surfaces can intensify the heat exchange and can enhance the Nu number by 2.4% at the most outside. In
addition the intensification effectiveness of the Nu number will increase with an increase of the amplitude. It has
been found that the vibration of the wall surfaces can contribute to enhancing the heat exchange and the reason to
enhance the heat exchange lies in the improvement of the synergetic degree between the speed field and the temper—
ature gradient field and in a vibration period there exists an optimum phase angle corresponding to the field synergy
number F¢,. When the amplitude of vibration on the wall surfaces is constant the optimum phase angle will some—
what lag behind with an increase of the vibration amplitude. When the vibration frequency is constant the optimum
phase angle will be stabilized at around 315 degrees. Key words: vibration intensified heat exchange field syner—

gy dynamic grid

= Prediction of the Performance Parameters of a
Gas Turbine and Diagnosis of Its Faults Based on the Extended Kalman Wave Filtration KANG
Wei—guo JIANG Dong—=iang ( National Key Laboratory on Electric Power System and Power Generation Equipment
Control and Simulation Department of Thermal Energy Engineering Tsinghua University Beijing China Post Code:

100084) //Journal of Engineering for Thermal Energy & Power. —2015 30(5) . -702 -707

The extended Kalman wave filtration method was applied in the domain of predicting the performance parameters
and states of a gas turbine and diagnosing its thermal faults. According to a real gas turbine a model for nonlinear
thermal systems was established and based on the data calculated by using the model a linear state and space model
for gas turbines including the healthy parameters of such components as the compressor HP turbine and power tur—
bine of a gas turbine. On this basis an extended Kalman filter was designed. By utilizing the extended Kalman fil-
ter thus designed the healthy parameters of the components relating to six typical thermal faults of a gas turbine in
sudden change and gradual change type respectively were estimated to realize an accurate estimation and diagnosis
of the thermal faults of the splitshaft gas turbine. It has been found that to use the extended Kalman filter to predict
the state of the performance parameters of the split-shaft gas turbine is very appropriate and accurate applicable for
real4ime state monitoring and fault diagnosis of split-shaft gas turbines. To this end the track of the faults triggered

by gradual changes of the performance parameters is on time and the diagnosis is more accurate. Key words: split—



