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= Influence of the Equivalent Ratio on the Premixed Combustion
Characteristics of Natural Gas Mixed and Diluted With Hydrogen JIA Liang HE Feng LI Huidin
FAN Xing—guang ( College of Mechanical Engineering Guizhou University Guiyang China Post Code: 550025) //

Journal of Engineering for Thermal Energy & Power. —2015 30(5) . -725 -729

In order to improve the combustion quality of natural gas mixed and diluted with hydrogen in an internal combustion
engine and enhance the power and emission performance of a vehicle by making use of the spheric flame schlieren
images obtained from a constant volume combustion bomb high speed schlieren system in combination with the sphe—
ric flame propagation theory analyzed was the law governing the influence of the fuel/air equivalent ratio on the
premixed combustion characteristics of natural gas mixed and diluted with hydrogen at various proportions of hydro—
gen mixed and diluted. Tt has been found that at a high proportion of hydrogen mixed and diluted a high equivalent
ratio can force the unstretched laminar flow combustion rate to emerge a peak value and can heighten the combus—
tion rate while a high proportion of hydrogen mixed and diluted can make the instability of the flame to be en-
hanced. A high equivalent ratio can contain the instability of the flame and enhance the stability of the flame and
there exists a critical value of the equivalent ratio ¢ =1.0 at which the combustion pressure is biggest and the time
duration required for attaining the maximum combustion pressure is shortest. In addition at a high proportion of hy—
drogen mixed and diluted the maximum combustion pressure is comparatively big. Key words: natural gas hydro—

gen equivalent ratio stability constant volume combustion bomb

= Numerical Study of the Influence of the Air Distribu—
tion Mode of a Burner on the Combustion of Coalbed Gas With a Low Heating Value CHEN Yan-—
rong LI Haogie YANG Zhong—qing ( Education Ministry Key Laboratory on Low Grade Energy Utilization Technolo—
gies Chongqing University Chongging China Post Code: 400030) FAN Hu ( Chongqging Youshui Hydropower De—
velopment Co. Litd. Chongging China Post Code: 409809) //Journal of Engineering for Thermal Energy & Power.

-2015 30(5). -730-735

Numerically simulated were various air distribution modes of a low heating value coalbed gas burner with a gas swir—
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ling flow and studied was the influence of three air distribution modes on the temperature field speed field and con—
centration distribution characteristics in the combustion zone namely single stage swirling air distribution inner
once-hrough and outer swirling dual stage air distribution and single stage once-through air distribution. It has been
found that the single stage swirling air distribution mode can achieve a good mixing result and quick ignition howev—
er have a quick temperature attenuation and a speed attenuation after the jet flow thus leading to an insufficient ri—
gidity of the jet flow. The mixing effectiveness of the inner once-through and outer swirling dual stage air distribu—
tion mode is better than that of the single stage once-through air distribution mode having a slow temperature atten—
uation and a wide—ranging distribution of high temperature zones. Both have a relatively slow speed attenuation of
the jet flow and no conspicuous difference. For a gas swirling burner additionally installed with guide blades inside
the gas pipe when two air annular chambers are adopted and the air distribution mode is the inner once-through and
outer swirling dual stage one both air and gas mixing effectiveness can be enhanced and a very good jet flow rigidity
can be kept more suitable for the combustion of low heating value coal bed gases. Key words: low heating value

coalbed gas burner air distribution mode combustion characteristics numerical simulation

= Analysis of the Particle Phase Inside a Rolling Circulating Fluidized Bed
Device CHEN Jie ZHAO Tong LIU Kai ( College of Mechanical and Precision Instrument Engineering
Xi” an University of Science and Technology Xi”an China Post Code: 710048) //Journal of Engineering for Ther—

mal Energy & Power. —2015 30(5) . —736 - 741

As the exhaust gas treatment devices for marine engines the circulating fluidized beds enjoy a comparatively high
exhaust gas absorption capacity and heat recovery efficiency. According to the test model and by conducting a nu—
merical simulation and a contrast with the test results by using the software CFD the particle phase concentration
distribution and particle circulating flow rate when the rising portion of the circulating fluidized bed is rolling with
the vessel and in the vertical state were compared and analyzed. The authors have arrived at the following conclu—
sion that compared with a circulating fluidized bed in the vertical state the rolling can lead to a relatively serious
particle phase deposition on the rising portion of the bed such deposition mainly emerges at the bottom of the bed
and at places close to the wall surfaces and the concentration distribution will change regularly with the rolling func—
tion. In the rolling state any change in the rolling angle is regarded as the main cause for changes in the particle

phase concentration distribution while changes in the rolling periods exercise no big influence on the particle phase



