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the final pyrolytic products. It has been found that under the condition of a relatively low cracking temperature of
600 °C the residence time of pyrolytic gases has no big influence on the pyrolytic products of bituminous coal while
under the condition of a cracking temperature of higher than 600 “C with an increase of the residence time of the
pyrolytic gases from 0 to 16 seconds the gas phase secondary reaction will become intensified and the coal tar with
large molecules will tend to form more stable benzenes toluene xylene and polycyclic aromatic hydrocarbons
( PAH) such as naphthalene methyl naphthalene phenanthrene and anthracene and hydrogen under the joint ac—
tion of the decomposition and polycondensation reactions and in the meantime the phenols will first increase and
then decompose to form CO the aromatic side chains and others will form CH, through demethylation. Key words:

secondary reaction residence time of pyrolytic gases bituminous coal

SOFA = Experimental Study of the Gas Flow Characteristics of SOFA QIN
Ming KONG Chao WU Shao-hua CHEN Li—~he ( College of Energy Source Sciences and Engineering Harbin Insti—
tute of Technology Harbin China Post Code: 150001) //Journal of Engineering for Thermal Energy & Power.

-2015 30(5) . -762 -767

With a 660 MW supercritical utility boiler serving as the prototype experimentally studied was the cold-state model—
ing of the characteristics of the gas flow in the SOFA ( separated overfired air) zones. During the test two arrange—
ment modes i. e. four corners and walls respectively were adopted for the SOFA and by making use of a particle
dynamic analyzer ( PDA) the gas flow speed field and particle concentration field of the SOFA were measured un—
der various test conditions and the gas flow characteristics of the SOFA were studied under various parameters. It
has been found that with an increase of the SOFA flow rate its jet flow rigidity will enhance and the penetration ca—
pacity of the jet flow will become higher favorable for a sufficient mixing of the SOFA with the main gas flow. Com—
pared with the wall type arrangement the gas flow of the SOFA of the corner type arrangement is more favorable for
a mixing with the main gas flow. For the corner type arrangement of the SOFA with an increase of the reverse tan—
gential angle of the spout of the SOFA it will be unfavorable for a sufficient mixing with the main gas flow. For the
wall type arrangement of the SOFA with an increase of the reverse tangential angle of the spout of the SOFA the gas
flow rigidity will somewhat become higher thus favorable for a sufficient mixing. Key words: SOFA cold state

modeling corner type arrangement wall type arrangement gas flow characteristics



