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ment of supercritical water was established and a numerical simulation study was made of the heat exchange and
phase-change process of materials in both tube and shell side by making use of the software CFX ( computational
fluid dynamics analytic software) . The TAPWS TF97 database was successfully used to numerically simulate the
physical property and state of the supercritical water and the phase-change process of the material in the tube side
from its subcritical state to supercritical one was expounded. By making use of the available test results the model in
question was verified. The simulation results show that the pressure drop and heat transfer coefficient in the shell
side will increase with an increase in the flow rate in the shell side. The growth rate of the temperature at the outlet
of the shell side will first become big and then small. To increase the interval of the baffles in the heat exchanger
from 117 mm 150 mm will be not conspicuous in enhancing the heat transfer effectiveness however the flow resist—
ance in the shell side will increase greatly. At a pressure of 23 MPa under the operating condition of the tempera—
ture changing from 400 °C to 600 °C the influence of the radiative heat transfer in the heat exchanger is relatively
big. When a numerical simulation is made the amount of heat transferred in the form of radiation cannot be ignored.

The actual structure of the heat exchange will be finalized by comprehensively considering the influence of the heat
transferred and coal particle deposition. The above-mentioned numerical simulation results can offer a certain theo—
retical significance and practical value in engineering projects in the design and study of the heat exchangers for use
in supercritical water coal gasification process. Key words: shell and tube type heat exchanger numerical simula—

tion supercritical water coal gasification

v - = Experimental Study of the yray Method for
Measuring the Gas Content in a Cross Section with a Subcritical Steam-water Two-phase Flow HU
Ri-¢ha LUO Zhi—chao ( Changchun Optic Precision Machinery and Physics Research Institute Changchun China

Post Code: 130033) BI Qin—cheng LU Hai-eai ( National Key Laboratory on Multi-phase Flow in Power Engineer—
ing Xian Jiaotong University Beijing China Post Code: 710049) //Journal of Engineering for Thermal Energy &

Power. —2015 30(6) . —842 —847

By adopting a single narrow beam y-ray method the void fraction in a section featuring a subcritical steam-water
two—phase flow in a vertical riser was measured. The operating conditions in the riser were given as follows: the

pressure ranged from 17 MPa to 21 MPa the mass flow speed of the working medium was in a range from 600 kg/
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(m” *s) to1000kg/(m” *s) and the temperature fell in a range from 25 °C to 400 °C. Through an analysis the
feasibility to measure the void fraction in a section of a subcritical steam-iquid two-phase flow by adopting the y-ray
method was investigated and the influence of the mass flow rate pressure and temperature of the working medium on
the measurement results by using the y—ray method was also analyzed. It has been found that the mass flow rate and
pressure of the working medium will have almost no influence on the measurement of the void fraction in a section of
a subcritical steam-iquid two—phase flow by adopting the gamma-—ay method while a change in the temperature by a
great margin will exercise a relatively marked influence on the measurement. A comparison of the test and measure—
ment values with those calculated by using the classic theoretical formula shows that the test and measurement val—
ues are in very good agreement with those calculated by using the Smith formula. Key words: sectional void frac—

tion y-ray gas-iquid two-phase flow subcritical

PID = Experiment of the Rotating Speed Control Over a Gas Engine
Based on an Expert PID ( Proportional Integral and Differential) Control Method WANG Ming-tao
( College of Energy Source and Power Engineering Ludong University Yantai China Post Code: 264025) ZHANG
Bai-hao ( College of Mechanical Engineering Tianjin University Tianjin China Post Code: 300072) //Journal of

Engineering for Thermal Energy & Power. —2015 30(6) . —848 —852

According to the historic data and experience from experts designed was a rotating speed controller for gas engines
based on the expert PID control method and experimentally studied were the rotating speed control of a gas engine
when it was suddenly added with a load variable speed control and anti-interference performance of the gas engine.

It has been found that no rotating speed reduction and flame failure occurs to the gas engine when it is suddenly
added with a load and the time required for attaining a new steady operating condition is less than 10 seconds. No o—
vershoots of the rotating speed emerge during the variable speed control process and the time required for attaining a
new steady operating condition is less than 20 seconds. The expert PID controller exhibits its good dynamic response
characteristics and for the fluctuation arisen from changes of the superheating degree of the gas engine the expert
controller also displays its relatively good anti-interference performance. Key words: gas engine-driven heat pump

rotating speed control expert PID ( proportional integral and differential) suddenly-added load variable capacity

anti-interference performance



