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= Applications of the Vector Fitting Method in Moni—
toring Blade Faults of Gas Turbines GAO Shan WANG Lixin ( College of Electrical Engineering and
Automation Harbin Institute of Technology Harbin China Post Code: 150001) FENG Chi XIAO Yi-han ( College
of Information and Communication Engineering Harbin Engineering University Harbin China Post Code:

150001) //Journal of Engineering for Thermal Energy & Power. —2015 30(6) . —853 —858

To reduce the occurrence of any faults in gas turbine systems is regarded as the precondition for realizing safe opera—
tion of gas turbines. Turbine blades are important parts and components in gas turbines and also one of parts operat—
ing in a stern environment. Any faults of the turbine blades usually reflect in changes of temperature. The distribu—
tion of temperature signals on the blades of a gas turbine was studied with an emphasis being placed on the charac—
teristics of the temperature signals and the data being properly processed. By adopting the vector fitting method a
temperature data equation for blades in various operating environments was obtained thus achieving an objective to
detect any faults and offering a basis for an on-ine detection of any faults in blades of gas turbines. Key words:

turbine blade temperature distribution vector fitting application in monitoring of faults

= Establishment of a Function Model for Atomization
Characteristics of a Nozzle and Its Applications in Combustion Simulation CHEN Xiaoding GE
Bing ZANG Shu-sheng ( College of Mechanical and Power Engineering Shanghai Jiaotong University Shanghai

China Post Code: 200240) //Journal of Engineering for Thermal Energy & Power. —2015 30(6) . —859 - 864

By using a phase Doppler anemometer ( PDA) experimentally studied were the atomization characteristics of a pres—
surized atomization nozzle under the typical operating conditions. The Gauss distribution function was employed to
represent the radial distribution of the atomization parameters and the exponential attenuation function was used to
represent the axial distribution of the extremum values of atomization parameters. On this basis an atomization char—
acteristic model for the nozzle was established and the relative error between the results obtained by using the model
in question and the test data was not in excess of 10% . The atomization function model in question was applied in a
dual swirling combustor in a same direction to perform a discrete phase setting of the data of the fuel oil atomization
characteristics simulated and on this basis the flame distribution characteristics inside the combustor were analyzed.

Therefore the feasibility of an application of the self-defined atomization characteristic model in combustion simula—
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tion was verified. It has been found that compared with the setting of the initial atomization characteristics being uni—
formly distributed the variation tendency of the temperature and flow field inside the combustor calculated by using
the function model under discussion is roughly identical. The high temperature zone at a temperature of 1800 K be—
comes small by 20% along the radial direction and shifts by 0. 01 m to the downstream of the combustor. In the
meantime the return flow zone moves by 0. 025 m to the downstream of the combustor. Key words: phase Doppler
anemometer ( PDA) atomization model Gauss distribution exponential attenuation function dual swirling fuel oil

combustion numerical calculation

= Analysis and Optimization of a Reheat Combined Cycle Sys—
tem for New Type Gas Turbines FU Zhong-guang LU Ke ( National Engineering Technology Research
Center for Thermal Power Generation North China University of Electric Power Beijing China Post Code:
102206) GUO Hua YANG Tiandiang ( New Energy Source Technology Research Institute China National Power
Group Beijing China Post Code: 102209) //Journal of Engineering for Thermal Energy & Power. —2015 30(6) .

-865 -872

A new type high pressure reheat gas-steam combined cycle system was proposed and a model for high pressure re—
heat gas-steam combined cycle systems was established by using the software Aspen Plus. A thermodynamic calcula—
tion and analysis and off-design condition simulation of the system in question were performed. On this basis the in—
fluence of the highest pressure of the system on the efficiency of the cycle was studied and analyzed in depth. It has
been found that the thermal efficiency of the system in question reaches 61.22% about 3. 6 percentage points high—
er than that of a combined cycle system with a currently prevailing F class gas turbine unit serving as the main e—
quipment item and also 1.2 percentage points higher than that of a combined cycle system with a GT26 reheat type
gas turbine serving as the main equipment item. The output power of the system in question can hit 816. SMW 73%
higher than the capacity of a current F class gas turbine combined cycle system. Key words: gas turbine combined

cycle thermal system parameter optimization

= Flow Field Characteristics and Aerodynamic Losses

of a Miniature Impulse Type Partial Admission Turbine JIANG Bin LUO Kai ( College of Marine Nav—



