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Fig. 1 The schematic diagram of an impulse

partial admission turbine
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Tab. 1 Design parameters of a micro turbine
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Tab. 2 Experimental parameters of a micro turbine
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Fig. 6 Mach number distribution of the canted nozzle field at half of blade cascades’ width
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Fig. 11 Comparisons of numerical result streamlines
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tion was verified. It has been found that compared with the setting of the initial atomization characteristics being uni—
formly distributed the variation tendency of the temperature and flow field inside the combustor calculated by using
the function model under discussion is roughly identical. The high temperature zone at a temperature of 1800 K be—
comes small by 20% along the radial direction and shifts by 0. 01 m to the downstream of the combustor. In the
meantime the return flow zone moves by 0. 025 m to the downstream of the combustor. Key words: phase Doppler
anemometer ( PDA) atomization model Gauss distribution exponential attenuation function dual swirling fuel oil

combustion numerical calculation

= Analysis and Optimization of a Reheat Combined Cycle Sys—
tem for New Type Gas Turbines FU Zhong-guang LU Ke ( National Engineering Technology Research
Center for Thermal Power Generation North China University of Electric Power Beijing China Post Code:
102206) GUO Hua YANG Tiandiang ( New Energy Source Technology Research Institute China National Power
Group Beijing China Post Code: 102209) //Journal of Engineering for Thermal Energy & Power. —2015 30(6) .

-865 -872

A new type high pressure reheat gas-steam combined cycle system was proposed and a model for high pressure re—
heat gas-steam combined cycle systems was established by using the software Aspen Plus. A thermodynamic calcula—
tion and analysis and off-design condition simulation of the system in question were performed. On this basis the in—
fluence of the highest pressure of the system on the efficiency of the cycle was studied and analyzed in depth. It has
been found that the thermal efficiency of the system in question reaches 61.22% about 3. 6 percentage points high—
er than that of a combined cycle system with a currently prevailing F class gas turbine unit serving as the main e—
quipment item and also 1.2 percentage points higher than that of a combined cycle system with a GT26 reheat type
gas turbine serving as the main equipment item. The output power of the system in question can hit 816. SMW 73%
higher than the capacity of a current F class gas turbine combined cycle system. Key words: gas turbine combined

cycle thermal system parameter optimization

= Flow Field Characteristics and Aerodynamic Losses

of a Miniature Impulse Type Partial Admission Turbine JIANG Bin LUO Kai ( College of Marine Nav—
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igation Northwest Polytechnic University Xian China Post Code: 710072) ZHENG Tao ( CSIC No. 703 Research
Institute Harbin China Post Code: 150078) //Journal of Engineering for Thermal Energy & Power. —2015 30

(6). —873 -879

To study the flow field and aerodynamic loss characteristics of a miniature impulse type partial admission turbine
and then offer guidance for design of a miniature turbine for use in a underwater navigation vehicle a simulation
model for 2 kW class turbines was established and the reliability of the model was verified through a contrast with
the results obtained from the literatures. Through changes in the blade tip clearance axial clearance between the
outlet of the nozzles and the rotating blades divergence angle of the nozzles partial admission degree and wheel disk
structure the aerodynamic loss of the turbine was studied. It has been found that the miniature turbine has a dimen—
sional effect which reflected by the fact that the acoustic velocity point in the nozzle shifts to the downstream of the
throat of the nozzle and changes in the pressure on the surfaces of the working blades are relatively identical. With
an increase of the geometrical parameters above-mentioned the influence of the blade tip clearance on the inner effi—
ciency of the turbine will be most conspicuous and the influence of the axial clearance however can be ignored.

When the partial admission degree is 0.35 the rise in the inner efficiency will tend to be stable and smooth. When
the divergence angle of the nozzle is 8 degrees the inner efficiency of the turbine is higher than that when the partial
admission degree is 6 and 10 degrees respectively. When no blade tip clearance is present the friction loss of the
wheel disks not including the blades is about 1% . Key words: miniature impulse type turbine partial admission

aerodynamic loss numerical simulation inner efficiency

= Study of Flue Gas Waste Heat Utilization of a Utility Boiler XU Min
XIANG Wen—guo ( Education Ministry Key Laboratory on Energy Source Heat Conversion and Its Process Measure—
ment and Control Southeast University Nanjing China Post Code: 210096) ZHAO Ming LIANG Jun-yu ( Electric

Power Academy Yunnan Electric Power Experiment Research Institute ( Group) Co. Ltd. Kunming China Post

Code: 650000) //Journal of Engineering for Thermal Energy & Power. —2015 30(6) . —880 — 884

A high temperature of the flue gases from a boiler can seriously affect the economic operation of a whole coal-fired
power plant. To lower the temperature of the flue gases and enhance the power generation efficiency of a power

plant two waste heat staged utilization design versions were proposed including a flue gas splitting flow waste heat



