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Fig. 1 The schematic diagram of section grid

and simplified model of boiler drum
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Fig. 8 The comprehensive stress of drum

during a cold start-up process
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Tab. 4 The results of fatigue loss
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utilization version and an additional economizer waste heat utilization version. Both versions were applied in a 330
MW unit chosen and analyzed and compared with the low pressure economizer version. It has been found that both
waste heat utilization versions can lead to a conspicuous energy-saving result better than the low pressure economi—
zer version. When the waste heat recovery temperature is 20 °C  the relative efficiencies of both versions can in—
crease by 1.08% and 1.21% respectively and their corresponding standard coal consumption rates can decrease by
3.47 and 3. 89 g/kWh respectively. Key words: boiler exhaust flue gas temperature waste heat recovery

energy-saving

= Study of a System for On-line Monitoring the Fatigue Life of
Steam Drums in Supercharged Boilers LI Bin SHI Liangxiao CHEN Feng ( College of Energy Source
Power and Mechanical Engineering North China University of Electric Power Baoding China Post Code:
071003) LI Yan—un ( College of Power and Energy Source Engineering Harbin Engineering University Harbin

China Post Code: 150001) //Journal of Engineering for Thermal Energy & Power. —2015 30(6) . —885 —891

In the light of the steam drum in a supercharged boiler characterized by its local heating on the outer wall a method
was proposed for calculating the transient temperature field in the steam drum based on the coupling method for see—
king solutions to the positive and reverse heat conduction problems and an on-ine fatigue life monitoring system was
developed. In line with the fact that the outer wall of the steam drum is heated or not the cross section of the drum
can be divided into two zones one is heated and another is not heated. The positive and reverse heat conduction
problem methods were adopted respectively to seek solutions to the temperature fields in both zones. For the bounda—
ry zones coupled the temperature values on the interface obtained by using the reverse problem solution-seeking
method were assigned to the positive problem solution-seeking method to serve as the known boundary conditions

thus realizing a coupling of the positive and reverse problem and obtaining the temperature field of the whole drum.

Afterwards the finite element method was used to seek solutions to the transient stress in the section of the steam
drum above-mentioned as per a plane strain problem. On this basis an on-ine fatigue life loss monitoring system
was developed to achieve the aim of ondine monitoring the fatigue life loss of steam drums on boilers and guiding
the operation. By making use of the software Ansys the temperature and stress field of the steam drum on the boiler

during its cold-state startup process were calculated. To this end the method in question was verified and the fatigue
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life loss of the drum was analyzed. It has been found that the temperature and stress field in the steam drum calcu-
lated by using both methods are in very good agreement and various errors are within a range of 5% thus meeting
the requirements for engineering applications. Moreover what mostly influences the service life of the steam drum is
the stress cycle with a relatively large value. Key words: steam drum in a boiler coupling method for seeking solu—

tions temperature field rain flow counting method

= Study of the Influence of the Inlet Pressure and
Slurry Concentration on the Separation Characteristics of a Gypsum Cyclone SHEN Guo-ging LI
Zhi—giang AN Lian-suo FAN Peng ( National Research Center for Thermal Power Generation Engineering Technolo—
gy North China University of Electric Power Beijing China Post Code: 102206) //Journal of Engineering for Ther—

mal Energy & Power. —2015 30(6) . —892 -896

With a gypsum cyclone serving as a core equipment item in a limestone wet-method flue gas desulfurization system
in a thermal power plant the separation characteristics of the gypsum cyclone have gained increasingly high atten—
tion. By using a test method the authors have conducted a study of an existing gypsum dewatering system with the
influence of the inlet pressure and slurry concentration on the separation performance of the gypsum cyclone being
obtained. It has been found that in a certain range with an increase of the inlet pressure step by step all the produc—
tion capacity separation and classification efficiency of the cyclone will gradually increase. With an increase of the
slurry concentration the separation efficiency and the underflow mass concentration will also increase. When the in—
let pressure is 0. 030 MPa and the gypsum slurry concentration is 19. 7% the volumetric flow rate of the gypsum cy—
clone is relatively high and both separation and classification efficiency of the gypsum cyclone are highest. Key
words: inlet pressure slurry concentration production capacity separation efficiency classification efficiency gyp—

sum cyclone

= Fault Diagnosis of a Milling System Based on
the Mean Impact Value Algorithm and a Probability Neural Network FAN Shuai XIAO Jun SUN

Hui ( College of Information and Control Engineering Liaoning Petroleum and Chemical Engineering University

Fushun China Post Code: 113001) ZHANG Peng-zhan ( Information College East China University Shanghai



