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! Fig. 1 Flow network system of lower furnace
Tab. 1 The structural parameters of spiral water wall
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Fig. 2 The schematic diagram of the circuits
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Fig. 4 The distribution coefficient of heat
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Fig. 3 The heat flux rate distribution along the
height of furnace under the BMCR load
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Tab. 2 The pressure drop in furnace at each load( MPa)
Apgon  Apy, Apy
100% BMCR 1.286 0.324 1.61 1.64 °
75% BMCR 0.669 0.176 0. 845 0.84 3.3
30% BMCR 0.392 0.102 0.494 0.37 7- 9 100% BMCR.75% BMCR
30% BMCR
3.2 °
1.8
Ap, °
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Fig. 10 Fluid and metal temperature distribution
in circuit 12 at 100% BMCR load
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depth and the notably worsen the mixing and dilution uniformity. Compared with the circumstance that a swirling
flow is present in the main stream when no swirling flows are present in the main stream the relative penetration
depth will become smaller and the mixing and dilution uniformity will become worse thus the mixing and dilution
effectiveness will be not good. Key words: RQL ( rich-quenchdean) combustor PLIF ( plane laser-induced fluores—

cence) testing laser visualization relative penetration depth mixing and dilution uniformity

= Numerical Simulation of the Flow Field Inside
a Polyline Type Three-channel Demister and Analysis of Its Demisting Efficiency HONG Wen-peng
DENG Guang-qiang LEI Jian—qi ( College of Energy Source and Power Engineering Northeast University of Electric
Power Jilin China Post Code: 132012) //Journal of Engineering for Thermal Energy & Power. —2016 31(1).

-54 -58

The CFD ( computational fluid dynamics) software was used to conduct a numerical simulation of the flow field in—
side a polyline type three-channel demister. According to the flow characteristics of the flow field inside the demis—
ter the Reynolds time-averaged equation-based RNGk — w turbulent flow model was used for the gas phase and the
Eulerd.agrange method-based DPM ( discrete phase model) model was used for the liquid phase. It has been found
that the demisting efficiency of a demister is influenced by the plate type of itself gas flow speed and liquid drop di-
ameter. To increase the interval between any two plates will decrease the demisting efficiency. To increase the liquid
drop diameter and the gas flow speed will invariably increase the demisting efficiency. The demisting efficiency of a
polyline type three-channel demister is generally higher than that of a two-channel one. When the gas flow speed is
less than 2 m/s or greater than 5 m/s the difference between the demisting efficiencies of both types of demister is
not notable. When the gas flow speed is greater than 2 m/s or less than 5 m/s a polyline type three-channel demis—
ter enjoys a conspicuous leading edge. Key words: numerical simulation two-phase flow demister demisting effi—

ciency

= Study of the Flow Rate Distribution and Wall Tem—
perature Characteristics of the Spirally—coiled Tube Water Wall in a Supercritical Boiler WANG
Weishu SHANGGUAN Shan-shan XU Wei-hui ( Energy Source Engineering Research Center North China Uni-

versity of Water Conservation and Hydropower Zhengzhou China Post Code: 450011) GUO Hui—un ( Shanghai
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Branch Hebei Electric Power Prospecting and Designing Research Institute Shijiazhuang China Post Code:

050000) //Journal of Engineering for Thermal Energy & Power. —2016 31(1). -59 —-65

Based on the fluid piping network calculation theory established was a 600 MW supereritical boiler spirally—oiled
tube water wall flow network system composed of flow rate loops pressure nodes and connection pipes. According to
the law of mass momentum and energy conservation a mathematical model for calculating the flow rate and wall
temperature of spirally-coiled tube water walls of 600 MW superecritical boilers. The quasi-Newton method was used
to seek solutions to the flow rate loop and node equation group and a calculation program was developed to obtain
the flow pressure drop flow rate distribution and wall temperature characteristics inside a spirally-coiled tube water
wall at various loads. It has been found that at a load of 100% 75% and 30% BMCR ( boiler maximum continuous
rating) both thermal and flow rate deviation are relatively small the thermal deviation being maximally 5 °C and the
flow rate deviation being maximally 7.47% . The flow pressure drop is in relatively good agreement with the design
value. The wall temperature of the water wall will increase with an increase of the height the highest wall tempera—
ture being 469.4 °C. The tube wall temperatures at various loads are invariably below the allowable temperature for
the tube material. Key words: supercritical boiler flow network system spirally-coiled tube water wall flow rate

distribution wall temperature

= Analysis of the Fatigue Life of a Separator for Starting Up a Super—
critical Boiler ZHANG Ying CHENG Yi YUAN Zhi-ping ZHOU Zhiei ( College of Eelectro-mechanical
Engineering Nanchang University Nanchang China Post Code: 330031) //Journal of Engineering for Thermal En-

ergy & Power. —2016 31(1). -66 -70

A three-dimensional entity model for startup separators was established and the finite element method was employed
to simulate the temperature distribution and peak stress of a separator for starting up a supercritical once-through
boiler during its cold-state startup period and analyze the service life loss in the process of the cold-state startup of
the separator. It has been found that during the startup period of the separator the highest temperature zone emerges
at a location to connect the steam-water lead-in tube inside the separator and the temperature difference between the
inner and outer wall of the separator is greater than that of the steam-water lead-in tube. The maximum peak stress
emerges at a location of the port on the shell of the separator in the tangential direction opened for the steam-water

lead-in tube. Damages caused by the fatigue stress always occur at locations subjected to a stress concentration and



