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studied by experimentally investigating combustion characteristics of 13 blended coals optimized by using the expert
system of multivariate optimization in a drop tube furnace. The effects of coal fineness R90 excess air ratio and wall
temperature in ignition temperature ignition distance and combustion emissions are reported in detail in this paper.
Results show none of 13 optimized coal blends has appreciable slag indicating this multivariate optimization technol-
ogy has successfully improved the slagging characteristics of coal via effective and optimized blending. Key words:

power coal blending drop tube furnace combustion properties

= An Experimental and Computational Study of Spray Combustion in
Swirling Flows LIU Zhen—ian ZHU Min LI Shao-shuai ( Key Laboratory for Thermal science and Power
Engineering of Ministry of Education /Department of Thermal Engineering Tsinghua University Beijing China Post

Code: 100084) // Journal of Engineering for Thermal Energy & Power. —2016 31(2) . —245 -251

In the energy and power systems swirl-stabilized spray combustion is a common combustion strategy. How to further
improve the combustion efficiency and reduce emissions is the core interest of basic research and technology devel-
opment. In this article we used both experiments and numerical simulations to analyze the influence of swirl on flow
field structure droplet evaporation and combustion characteristics. The structure of cyclone flow field can be divided
into three parts: the central recirculation zone and two kinds of helical vortex which structure is affected by swirl
number. With the increase of swirl number the inner vortex becomes stronger while the outer vortex becomes wea—
ker. With the help of swirl the oil droplets spread outward evaporate more quickly and mix with air more efficient—
ly leading to higher fuel concentration in upstream and higher combustion efficiency. With the increase of Reynolds
number the central recirculation zone increases gradually and the length of flame becomes shorter. Key words: swirl—
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